P. G. Reddy, S. Baskaran / Tetrahedron Letters 43 (2002) 1919–1922
1921
tion as it gave the expected N-benzyl formamide 2l in
good yield.
Acknowledgements
Although a detailed investigation of the mechanism of
this novel transformation is yet to be carried out, a
plausible mechanism is given in Eqs. (1–4). In the
presence of Pd/C, ammonium formate can undergo
decomposition to generate hydrogen along with carbon
dioxide and ammonia (Eq. (1)).6 Reduction of the aryl
azide to the aniline takes place in the presence of Pd/C
and hydrogen (Eq. (2)).7a It is known that under ther-
mal conditions, ammonium formate can decompose to
generate formamide14 (Eq. (3)) which in turn can react
with aniline to furnish N-formanilide (Eq. (4)).15
Pd/C
We thank Dr. B. Parthasarathi Reddy C. M. D. Het-
ero Drugs Ltd, Hyderabad and Professor K. K. Bala-
subramanian for providing spectral data. We thank
DST, New Delhi for financial support and P.G.R.
(SRF) thanks CSIR, New Delhi for a research fellow-
ship.
References
1. (a) Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzou-
graki, C.; Meienhofer, J. J. Org. Chem. 1978, 43, 4194;
(b) Bajwa, J. S. Tetrahedron Lett. 1992, 33, 2299.
2. ElAmin, B.; Anantharamaiah, G. M.; Royer, G. P.;
Means, G. E. J. Org. Chem. 1979, 44, 3442.
3. Anwer, M. K.; Khan, S. A.; Sivanandaiah, K. M. Syn-
thesis 1978, 751.
4. Entwistle, I. D.; Gilkerson, T.; Johnstone, R. A. W.;
Telford, R. P. Tetrahedron 1978, 34, 213.
HCO2NH4ꢀꢀꢀꢀꢀꢁH2+CO2+NH3
(1)
(2)
(3)
(4)
Pd/CH
2
ArꢀN3ꢀꢀꢀꢀꢀꢀꢁArꢀNH2
D
HCO2NH4 X NH2ꢀCHO+H2O
ArꢀNH2+NH2ꢀCHOArꢀNHꢀCHO+NH3
In conclusion, we have developed an unusually novel
and chemoselective method for the direct conversion of
aryl azides to N-formanilides under catalytic transfer
hydrogenation reaction conditions. We are confident
that this one-pot, reductive, N-formylation method will
allow us to construct biologically important hetero-
cyclic ring systems in a more efficient manner.
5. (a) Anwer, M. K.; Spatola, A. F. J. Org. Chem. 1983, 48,
3503; (b) Anwer, M. K.; Spatola, A. F. Tetrahedron Lett.
1981, 22, 4369.
6. Ram, S.; Ehrenkaufer, R. E. Synthesis 1988, 91.
7. (a) Gartiser, T.; Selve, C.; Delpuech, J.-J. Tetrahedron
Lett. 1983, 24, 1609; (b) Anwer, M. K.; Sherman, D. B.;
Roney, J. G.; Spatola, A. F. J. Org. Chem. 1989, 54,
1284; Rajagopal, S.; Spatola, A. F. J. Org. Chem. 1995,
60, 1347; (c) Brown, G. R.; Foubister, A. J. Synthesis
1982, 1036; (d) Chen, F. E.; Zhang, H.; Yuan, W.;
Zhang, W. W. Synth. Commun. 1991, 21, 107; (e) Balicki,
R. Gazz. Chim. Ital. 1992, 122, 133; (f) Barrett, A. G. M.;
Spilling, C. D. Tetrahedron Lett. 1988, 29, 5733; (g)
Rajeswari, S.; Drost, K. J.; Cava, M. P. Heterocycles
1989, 19, 415; (h) Balicki, R. Synthesis 1989, 645; (i) Bieg,
T.; Szeja, W. Carbohydr. Res. 1990, 205, 90; Beaupere,
D.; Boutbaiba, I.; Wadouachi, A.; Frenchou, C.;
Demailly, G.; Uzan, R. New J. Chem. 1992, 16, 405; (j)
Botta, M.; Summa, V.; Saladino, R.; Nicoletti, R. Synth.
Commun. 1991, 21, 2181; (k) Rao, H. S. P.; Reddy, K. S.
Tetrahedron Lett. 1994, 35, 171.
8. (a) Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. Tetra-
hedron Lett. 2000, 41, 9149; (b) Pratap, T. V.; Baskaran,
S. Tetrahedron Lett. 2001, 42, 1983.
9. Kobayashi, K.; Nagato, S.; Kawakita, M.; Morikawa,
O.; Konishi, H. Chem. Lett. 1995, 575.
10. Kotachi, S.; Tsuji, Y.; Kondo, T.; Watanabe, Y. J. Chem.
Soc., Chem. Commun. 1990, 549.
11. Petit, G. R.; Kalnins, M. V.; Liu, T. M. H.; Thomas, E.
G.; Parent, K. J. Org. Chem. 1961, 26, 2563.
1. Experimental
1.1. Representative procedure16
Synthesis of ethyl 3-(N-formylamino)phenoxy acetate
(2 g): To a stirred solution of ethyl 3-azidophenoxy
acetate 1g (130 mg, 0.59 mmol) in dry acetonitrile (5
mL) was added 10% palladium on carbon (26 mg) and
anhydrous ammonium formate (185 mg, 2.94 mmol).
The resulting mixture was stirred for 20 h at reflux
temperature under a nitrogen atmosphere. The reaction
mixture was filtered through a pad of Celite and the
filtrate was concentrated under reduced pressure. The
residue obtained was diluted with ethyl acetate (20 mL),
washed with water (2×10 mL) and dried over anhy-
drous sodium sulfate. The organic layer was concen-
trated under reduced pressure to afford the pure title
compound 2g as a mixture of rotamers (98 mg, 75%
yield): mp=62–64°C; 1H NMR (400 MHz) l=8.68 and
8.34 (two d, J=11.3 Hz and 2.0 Hz, 1H), 8.05 (bd) and
7.50 (bs, 1H), 7.31–7.21 (m, 2H), 7.09–7.07 and 6.73–
6.67 (two m, 2H), 4.63 (s, 2H), 4.28 and 4.27 (two q,
J=7.3 Hz, 2H), 1.31 and 1.30 (two t, J=7.3 Hz, 3H);
13C NMR (100 MHz) l=14.1, 61.4, 61.5, 65.3, 105.8,
106.6, 110.4, 110.7, 111.8, 113.1, 129.8, 130.6, 138.1,
138.3, 158.1, 158.7, 159.3, 162.5, 168.6, 168.9; IR
(KBr): 3335, 1745, 1704 cm−1; MS (EI, 70 eV) m/z (rel.
intensity) 223 (M+, 49), 65 (100). Anal. calcd for
C11H13NO4: C, 59.19; H, 5.87; N, 6.28. Found: C,
58.97; H, 5.65; N, 6.15.
12. Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Com-
mun. 1995, 1319.
13. The N-formanilide derivatives exist as discrete rotamers
1
as seen by H NMR spectroscopy. Please see: Manea, V.
P.; Wilson, K. J.; Cable, J. R. J. Am. Chem. Soc. 1997,
119, 2033 and references cited therein.
14. Loupy, A.; Monteux, D.; Petit, A.; Aizpurua, J. M.;
Dominguez, E.; Palomo, C. Tetrahedron Lett. 1996, 37,
8177.