E
D. B. Nale, B. M. Bhanage
Letter
Synlett
(10) (a) Kozak, M. Microbiol. Rev. 1983, 47, 1. (b) Wisniewski, J. R.;
Zougman, A.; Mann, M. Nucleic Acids Res. 2008, 36, 570.
(11) (a) Ding, S.; Jiao, N. Angew. Chem. Int. Ed. 2012, 51, 9226; Angew.
Chem. 2012, 124, 9360. (b) Muzart, J. Tetrahedron 2009, 65,
8313.
(12) Haynes, P.; Slaugh, L. H.; Kohnle, J. F. Tetrahedron Lett. 1970, 365.
(13) (a) Koinuma, H.; Kawakami, F.; Kato, H.; Hirai, H. J. Chem. Soc.,
Chem. Commun. 1981, 213. (b) Berkefeld, A.; Piers, W. E.; Parvez,
M.; Castro, L.; Maron, L.; Eisenstein, O. Chem Sci. 2013, 4, 2152.
(c) Jacquet, O.; Gomes, C. D.; Ephritikhine, M.; Cantat, T. Chem-
CatChem 2013, 5, 117. (d) Lalrempuia, R.; Iglesias, M.; Polo, V.;
Miguel, P. J. S.; Fernandez-Alvarez, F. J.; Perez-Torrente, J. J.; Oro,
L. A. Angew. Chem. Int. Ed. 2012, 51, 12824.
flushing the reactor three times with 10 atm of N2, followed by
the CO2 to the desired pressure, the reactor was heated and
stirred vigorously at 530–600 rpm for 12 h. After completion of
the reaction, the reactor was cooled to r.t. and the pressure was
carefully released. Basic hydrolysis of the reaction mixture was
carried out as previously described.5h The reaction mixture was
then extracted with EtOAc (3 × 10 mL), the combined organic
layers were dried over anhyd Na2SO4, filtered and evaporated in
vacuo. The isolated crude oil product was further purified by
column chromatography on 100–200 mesh size silica gel (elu-
tion with 20:4 → 10:2 petroleum ether–EtOAc) to provide the
corresponding pure compound. The spectroscopic data are con-
sistent with those reported in the literature and in agreement
with the assigned structures.21
(14) (a) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.
1994, 116, 8851. (b) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R.
J. Am. Chem. Soc. 1996, 118, 344.
Morpholine-4-carbaldehyde (2a): colorless oil; yield: 99%. 1H
NMR (400 MHz, 30 °C, CDCl3, TMS): δ = 7.92 (s, 1 H), 3.58–3.52
(m, 4 H), 3.44 (t, J = 4.0 Hz, 2 H), 3.28 (t, J = 4.0 Hz, 2 H). 13C NMR
(100 MHz, 30 °C, CDCl3, TMS): δ = 160.81, 67.08, 66.26, 45.67,
40.44. GC–MS (EI): m/z (%) = 115 (100) [M]+.
(15) (a) Formamides; Bipp, H.; Kieczka, H., Eds.; In Ullmann’s Ency-
clopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2000.
(b) Ke, Z.; Zhang, Y.; Cui, X.; Shi, F. Green Chem. 2016, 18, 808.
(16) Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
(17) (a) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson,
P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem. Int. Ed.
2010, 49, 9777; Angew. Chem. 2010, 122, 9971. (b) Federsel, C.;
Bart, C. Z.; Jackstell, R.; Baumann, W.; Beller, M. Chem. Eur. J.
2012, 18, 72. (c) Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell,
R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc.
2012, 134, 20701.
(18) (a) Fujihara, T.; Xu, T. H.; Semba, K.; Terao, J.; Tsuji, Y. Angew.
Chem. Int. Ed. 2011, 50, 523. (b) Gomes, C. D.; Jacquet, O.;
Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem.
Int. Ed. 2012, 51, 187. (c) Jacquet, O.; Frogneux, X.; Gomes, C. D.;
Cantat, T. Chem Sci. 2013, 4, 2127. (d) Jacquet, O.; Gomes, C. D.;
Ephritikhine, M.; Cantat, T. J. Am. Chem. Soc. 2012, 134, 2934.
(e) Motokura, K.; Takahashi, N.; Kashiwame, D.; Yamaguchi, S.;
Miyaji, A.; Baba, T. Catal. Sci. Technol. 2013, 3, 2392. (f) Chong, C.
C.; Kinjo, R. Angew. Chem. 2015, 127, 1. (g) Nguyen, T. V. Q.; Yoo,
W.-J.; Kobayashi, S. Angew. Chem. 2015, 127, 9341. (h) Tlili, A.;
Blondiaux, E.; Frogneux, X.; Cantat, T. Green Chem. 2015, 17,
157.
Indoline-1-carbaldehyde (2o): brown solid; yield: 78%. 1H
NMR (400 MHz, 30 °C, CDCl3, TMS): δ (mixture of rotamers) =
8.92 (s, 1 H, major), 8.50 (s, 1 H, minor), 7.24–7.14 (m, 3 H),
7.05–7.01 (m, 1 H), 4.05 (t, J = 8.0 Hz, 2 H), 3.14 (t, J = 8.0 Hz, 2
H). 13C NMR (100 MHz, 30 °C, CDCl3, TMS): δ = 157.58, 140.93,
127.57, 126.06, 125.13, 124.28, 109.38, 44.64, 27.17. GC–MS
(EI): m/z (%) = 147 (65) [M]+.
N-Benzyl-N-methylformamide (2q): colorless oil; yield: 95%.
1H NMR (400 MHz, CDCl3, 30 °C, TMS): δ (mixture of rotamers)
= 8.26 (s, 1 H, major), 8.13 (s, 1 H, minor), 7.37–7.17 (m, 5 H),
4.50 (s, 2 H, minor), 4.37 (s, 2 H, major), 2.82 (s, 3 H, minor),
2.76 (s, 3 H, major). 13C NMR (100 MHz, 30 °C, CDCl3, TMS): δ
(mixture of rotamers) = 162.74 (major), 162.57 (minor), 135.96
(minor), 135.69 (major), 128.88 (major), 128.67 (minor), 128.21
(major), 128.08 (minor), 127.62 (minor), 127.36 (major), 53.47
(major), 47.74 (minor), 34.05 (major), 29.44 (minor). GC–MS
(EI): m/z (%) = 149 (100) [M]+.
N-Methyl-N-phenylformamide (2s): brownish oil; yield: 93%.
1H NMR (400 MHz, 30 °C, CDCl3, TMS): δ = 8.39 (s, 1 H), 7.33 (t,
J = 8.0 Hz, 2 H), 7.20 (t, J = 8.0 Hz, 1 H), 7.10 (d, J = 4.0 Hz, 2 H),
3.24 (s, 3 H). 13C NMR (100 MHz, CDCl3, 30 °C, TMS): δ (mixture
of rotamers) = 162.27 (major), 162.17 (minor), 142.08, 129.55,
128.96, 126.32 (major), 126.16 (minor), 123.53, 122.26, 31.95.
GC–MS (EI): m/z (%) = 135 (85) [M]+.
(19) (a) Riduan, S. N.; Ying, J. Y.; Zhang, Y. G. ChemCatChem 2013, 5,
1490. (b) Huang, F.; Lu, G.; Zhao, L. L.; Li, H. X.; Wang, Z. X. J. Am.
Chem. Soc. 2010, 132, 12388. (c) Wang, B. J.; Cao, Z. X. RSC Adv.
2013, 3, 14007.
(20) General Procedure for the Synthesis of Formamide Deriva-
tives: The catalyst (10.0 mol%) was introduced into a 100-mL
autoclave equipped with an overhead stirrer and an automatic
temperature control system5i containing amine (1 mmol),
PMHS (4.0 mmol) and THF (5.0 mL) at r.t. After sealing and
(21) (a) Ortega, N.; Richter, C.; Glorius, F. Org. Lett. 2013, 15, 1776.
(b) Saidi, O.; Bamford, M. J.; Blacker, A. J.; Lynch, J.; Marsden, S.
P.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Tetrahedron Lett.
2010, 51, 5804. (c) Lebleua, T.; Kotsukib, H.; Maddalunoa, J.;
Legros, J. Tetrahedron Lett. 2014, 55, 362.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E