Communication
ChemComm
4 (a) Q.-F. Li, Y. Yang, A. Maleckis, G. Otting and X.-C. Su, Chem.
Commun., 2012, 48, 2704–2706; (b) T. Ikegami, L. Verdier, P. Sakhaii,
S. Grimme, B. Pescatore, K. Saxena, K. M. Fiebig and C. Griesinger,
J. Biomol. NMR, 2004, 29, 339–349; (c) G. Pintacuda, A. Moshref,
A. Leonchiks, A. Sharipo and G. Otting, J. Biomol. NMR, 2004, 29,
introduction of a substitution group in the DOTA-like tags is
more favorable to preserve the isomeric state in the protein
conjugates. The results are similar to the previously reported
L-Cys-DTPA tag,5f suggesting that the dynamic exchange of the
tag–Ln complex is an important factor in defining the rigidity of
the protein-tag conjugate. Therefore, the isomeric exchange
rate that is not achieved by HPLC, mass spectra and CD spectra,
is an important issue to be considered for applications of
biological systems by NMR.
ˆ
351–361; (d) M. Prudencio, J. Rohovec, J. A. Peters, E. Tocheva,
M. J. Boulanger, M. E. P. Murphy, H.-J. Hupkes, W. Kosters,
A. Impagliazzo and M. Ubbink, Chem. – Eur. J., 2004, 10, 3252–3260.
ˇ ˇ
5 (a) F. Peters, M. Maestre-Martinez, A. Leonov, L. Kovacic, S. Becker,
R. Boelens and C. Griesinger, J. Biomol. NMR, 2011, 51, 329–337;
(b) M. D. Vlasie, C. Comuzzi, A. M. C. H. van den Nieuwendijk,
ˆ
M. Prudencio, M. Overhand and M. Ubbink, Chem. – Eur. J., 2007,
To summarize, we show herein that 19F is a sensitive
reporter in delineating and quantifying the isomers of lantha-
nide binding complexes in solution without awkward assign-
ments in the routine 1H NMR. Combining the paramagnetic
shift analysis, 19F NMR allows one to determine the individual
isomers, the populations, and the exchange rates between the
isomers in the DOTA–Ln like tags. A paramagnetic tag with
slower exchange rates between different conformations is more
likely to perverse the paramagnetic behavior in its protein
conjugates. Such information sets valuable guidelines in the
design and evaluation of suitable paramagnetic tags for site-
specific tagging proteins. This method can be extended into
other paramagnetic tags containing the open-chain metal
chelating moieties, since the fluorine group is readily encoded
into the tags in organic synthesis steps. With increasing inter-
ests of 19F NMR in structural and chemical biology,17 we believe
that suitable paramagnetic tags in combination with sensitive
19F-repoter will find wide applications in this field.
13, 1715–1723; (c) M. A. S. Hass, W.-M. Liu, R. V. Agafonov, R. Otten,
L. A. Phung, J. T. Schilder, D. Kern and M. Ubbink, J. Biomol. NMR,
¨
2015, 61, 123–136; (d) D. Haussinger, J.-R. Huang and S. Grzesiek,
J. Am. Chem. Soc., 2009, 131, 14761–14767; (e) A. C. L. Opina,
M. Strickland, Y.-S. Lee, N. Tjandra, R. A. Byrd, R. E. Swenson and
O. Vasalatiy, Dalton Trans., 2016, 45, 4673–4687; ( f ) J.-L. Chen, B. Li,
X.-Y. Li and X.-C. Su, J. Phys. Chem. Lett., 2020, 11, 9493–9500.
6 I. Bertini and C. Luchinat, Coord. Chem. Rev., 1996, 150, 77–110.
7 (a) S. Aime, M. Botta and G. Ermondi, Inorg. Chem., 1992, 31,
4291–4299; (b) S. Hoeft and K. Roth, Chem. Ber., 1993, 126,
869–873; (c) M. Meyer, V. Dahaoui-Gindrey, C. Lecomte and
R. Guilard, Coord. Chem. Rev., 1998, 178–180, 1313–1405.
8 (a) M. Woods, S. Aime, M. Botta, J. A. K. Howard, J. M. Moloney,
M. Navet, D. Parker, M. Port and O. Rousseaux, J. Am. Chem. Soc.,
2000, 122, 9781–9792; (b) F. A. Dunand, S. Aime and A. E. Merbach,
J. Am. Chem. Soc., 2000, 122, 1506–1512; (c) V. S. Mironov,
Y. G. Galyametdinov, A. Ceulemans, C. Go¨rller-Walrand and
K. Binnemans, Chem. Phys. Lett., 2001, 345, 132–140;
¨
(d) M. Strickland, C. D. Schwieters, C. Gobl, A. C. L. Opina,
M.-P. Strub, R. E. Swenson, O. Vasalatiy and N. Tjandra, J. Biomol.
NMR, 2016, 66, 125–139.
9 Y. Yang, F. Yang, Y.-J. Gong, J.-L. Chen, D. Goldfarb and X.-C. Su,
Angew. Chem., Int. Ed., 2017, 56, 2914–2918.
10 Y. Yang, J.-T. Wang, Y.-Y. Pei and X.-C. Su, Chem. Commun., 2015, 51,
2824–2827.
11 (a) S. Aime, M. Botta, D. Parker and J. G. Williams, J. Chem. Soc.,
Dalton Trans., 1996, 2, 17–23; (b) R. S. Dickins, D. Parker, J. I. Bruce
and D. J. Tozer, Dalton Trans., 2003, 1264–1271; (c) J. Kotek,
This work was supported by the National Natural Science
Foundation of China (21991081 and 21273121 and 21473095).
ˇ
J. Rudovsk´y, P. Hermann and I. Lukes, Inorg. Chem., 2006, 45,
Conflicts of interest
3097–3102; (d) D. D. Castelli, M. C. Caligara, M. Botta, E. Terreno
and S. Aime, Inorg. Chem., 2013, 52, 7130–7138.
12 (a) B. Bleaney, J. Magn. Reson., 1972, 8, 91–100; (b) C. N. Reilley and
B. W. Good, Anal. Chem., 1975, 47, 2110–2116; (c) R. M. Golding and
P. Halton, Aust. J. Chem., 1972, 25, 2577–2581.
13 (a) S. Aime, M. Botta, M. Fasano, M. P. M. Marques,
C. F. G. C. Geraldes, D. Pubanz and A. E. Merbach, Inorg. Chem.,
There are no conflicts to declare.
Notes and references
1 (a) I. Bertini, C. Luchinat and G. Parigi, Prog. Nucl. Magn. Reson.
Spectrosc., 2002, 40, 249–273; (b) G. Parigi, E. Ravera and
C. Luchinat, Prog. Nucl. Magn. Reson. Spectrosc., 2019, 114–115,
211–236; (c) G. Otting, Annu. Rev. Biophys., 2010, 39, 387–405.
2 (a) G. Pintacuda, M. John, X.-C. Su and G. Otting, Acc. Chem. Res.,
2007, 40, 206–212; (b) M. A. S. Hass and M. Ubbink, Curr. Opin.
Struct. Biol., 2014, 24, 45–53; (c) Z. Wu, M. D. Lee, T. J. Carruthers,
M. Szabo, M. L. Dennis, J. D. Swarbrick, B. Graham and G. Otting,
´
1997, 36, 2059–2068; (b) A. Takacs, R. Napolitano, M. Purgel,
´
´ ´
´
A. C. Benyei, L. Zekany, E. Bru¨cher, I. Toth, Z. Baranyai and
S. Aime, Inorg. Chem., 2014, 53, 2858–2872; (c) M. Woods,
Z. Kovacs, R. Kiraly, E. Bru¨cher, S. Zhang and A. D. Sherry, Inorg.
Chem., 2004, 43, 2845–2851; (d) S. Aime, M. Botta, Z. Garda,
B. E. Kucera, G. Tircso, V. G. Young and M. Woods, Inorg. Chem.,
2011, 50, 7955–7965; (e) S. Aime, A. S. Batsanov, M. Botta,
J. A. K. Howard, M. P. Lowe and D. Parker, New J. Chem., 1999, 23,
669–670.
¨
Bioconjugate Chem., 2017, 28, 1741–1748; (d) S. Taubert, Y.-H. Zhang,
¨
M. M. Martinez, F. Siepel, E. Woltjen, A. Leonov and C. Griesinger,
ˇ
´
14 (a) V. Jacques and J. F. Desreux, Inorg. Chem., 1994, 33, 4048–4053;
(b) J. A. K. Howard, A. M. Kenwright, J. M. Moloney, D. Parker,
M. Port, M. Navet, O. Rousseau and M. Woods, Chem. Commun.,
1998, 1381–1382; (c) L. Di Bari, G. Pintacuda and P. Salvadori, Eur.
J. Inorg. Chem., 2000, 75–82.
ChemBioChem, 2020, 21, 3333–3337; (e) M. Erdelyi, E. dAuvergne,
´
A. Navarro-Vazquez, A. Leonov and C. Griesinger, Chem. – Eur. J.,
´
2011, 17, 9368–9376; ( f ) A. Canales, A. Mallagaray, J. Perez-Castells,
´
˜
I. Boos, C. Unverzagt, S. Andre, H. J. Gabius, F. J. Canada and
´
J. Jimenez-Barbero, Angew. Chem., Int. Ed., 2013, 52, 13789–13793.
´ˇ
15 T. Vitha, V. Kubıcek, J. Kotek, P. Hermann, L. Vander Elst,
˜
3 (a) F. Rodriguez-Castaneda, P. Haberz, A. Leonov and C. Griesinger,
ˇ
R. N. Muller, I. Lukes and J. A. Peters, Dalton Trans., 2009,
Magn. Reson. Chem., 2006, 44, S10–S16; (b) J. Koehler and J. Meiler,
Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59, 360–389; (c) W.-M. Liu,
3204–3214.
M. Overland and M. Ubbink, Coord. Chem. Rev., 2014, 273–274, 16 F. Yang, X. Wang, B. B. Pan and X.-C. Su, Chem. Commun., 2016, 52,
11535–11538.
2–12; (d) C. Nitsche and G. Otting, Prog. Nucl. Magn. Reson. Spec-
trosc., 2017, 98–99, 20–49; (e) X.-C. Su and J.-L. Chen, Acc. Chem. Res.,
17 (a) E. Matei and A. M. Gronenborn, Angew. Chem., Int. Ed., 2016, 55,
150–154; (b) J. Gao, E. Liang, R. Ma, F. Li, Y. Liu, J. Liu, L. Jiang,
C. Li, H. Dai, J. Wu, X. Su, W. He and K. Ruan, Angew. Chem., Int. Ed.,
2017, 56, 12982–12986; (c) Y. Huang, X. Wang, G. Lv, A. M. Razavi,
G. H. M. Huysmans, H. Weinstein, C. Bracken, D. Eliezer and
O. Boudker, Nat. Chem. Biol., 2020, 16, 1006–1012.
¨
2019, 52, 1675–1686; ( f ) D. Joss and D. Haussinger, Prog. Nucl.
Magn. Reson. Spectrosc., 2019, 114–115, 284–312; (g) M. Denis,
C. Softley, S. Giuntini, M. Gentili, E. Ravera, G. Parigi, M. Fragai,
G. Popowicz, M. Sattler, C. Luchinat, L. Cerofolini and C. Nativi,
ChemPhysChem, 2020, 21, 863–869.
This journal is © The Royal Society of Chemistry 2021
4294 | Chem. Commun., 2021, 57, 4291–4294