Please do not adjust margins
Catalysis Science & Technology
DOI: 10.1039/C5CY02277K
ARTICLE
Journal Name
effective up to five consecutive runs without any significant
loss in its catalytic activity and stability of the prepared
catalyst.
Zhang, Z. A. Li, M. Spasova, M. W. E. van den Berg, M. Farle,
Y. M. Wang, R. A. Fischer and M. Muhler, ChemCatChem,
2
010,
h) X. W. Zhou, J. Qu, F. Xu, J. P. Hu, J. S. Foord, Z. Y. Zeng, X.
L. Hong and S. C. E. Tsang, Chem. Commun., 2013, 49, 1747–
749.
2, 214–222; (g) D. Sperling, Energy, 2007, 28, 178–179;
(
1
Conclusions
4
(a) S. Chakraborty, J. Zhang, J. A. Krause, H. Guan, J. Am.
Chem. Soc., 2010, 132, 8872–8873; (b) S. Bontemps, L.
In conclusion, we have developed an efficient, green,
economical, phosphine-free and heterogeneous catalytic
methodology for the synthesis of formamides from amines and
Vendier, S. Sabo-Etienne, Angew. Chem. Int. Ed., 2012, 51,
671–1674; Angew. Chem., 2012, 124, 1703–1706; (c) M. A.
1
Courtemanche, M. A. Legare, L. Maron, F. G. Fontaine, J. Am.
Chem. Soc., 2013, 135, 9326–9329; (d) C. D. N. Gomes, E.
2 2 3
CO using amine modified meso Al O @MCM-41 as a catalyst
Blondiaux, P. Thuery, T. Cantat, Chem. Eur. J., 2014, 20
7
,
under solvent free and mild reaction conditions. After
completion of the reaction the catalyst was easily recovered
and again reused for five successive times without
considerable loss in its catalytic activity. This protocol was
highly efficient with respect to the various types of amines
098–7106; (e) T. Wang, D. W. Stephan, Chem. Eur. J. 2014,
, 3036–3039; (f) S. Bontemps and S. Sabo-Etienne, Angew.
2
0
Chem., Int. Ed., 2013, 52, 10253–10255. (g) S. Bontemps, L.
Vendier and S. Sabo-Etienne, J. Am. Chem. Soc., 2014, 136
,
4
2
419–4425. (h) R. Shintani and K. Nozaki, Organometallics,
013, 32, 2459–2462.
(1°/2° aliphatic as well as aromatic). The present catalytic
5
6
(a) F. J. Fernandez-Alvarez, A. M. Aitani, L. A. Oro, Catal. Sci.
Technol., 2014, , 611–624; (b) D. B. Nale and B. M. Bhanage,
reaction seems to be one of the ideal synthetic reactions.
4
Green Chem., 2015, 17, 2480–2486; (c) D. B. Nale and B. M.
Bhanage, Synlett, 2015, 26, 2835–2842.
(a) B. M. Bhanage, S. Fujita, Y. Ikushima and M. Arai, Appl.
Catal., A, 2001, 219, 259–266; (b) D. B. Nale, S. Rana, K. M.
Acknowledgements
The authors D. B. Nale thankful to the university grant
commission, India for providing financial support under UGC-
SAP-SRF program, Institute of Chemical Technology (ICT),
Mumbai, India.
Parida and B. M. Bhanage, Catal. Sci. Technol., 2014,
1608–1614; (c) D. B. Nale, S. Rana, K. M. Parida and B. M.
4,
Bhanage, Appl. Catal. A, 2014, 469, 340–349; (d) D. B. Nale,
S. D. Saigaonkar and B. M. Bhanage, J. CO Util., 2014, 8, 67–
2
7
Bhanage, Catal. Sci. Technol., 2012,
3; (e) R. A. Watile, K. M. Deshmukh, K. P. Dhake and B. M.
2, 1051–1055; (f) M.
Notes and references
Honda, A. Suzuki, B. Noorjahan, K. Fujimoto, K. Suzuki and K.
Tomishige, Chem. Commun., 2009, 4596–4598; (g) F. Shi, Y.
Q. Deng, T. L. SiMa, J. J. Peng, Y. L. Gu and B. T. Qiao, Angew.
Chem., Int. Ed., 2003, 42, 3257–3260; (h) M. Shi and K. M.
Nicholas, J. Am. Chem. Soc., 1997, 119, 5057–5058; (i) R.
Srivastava, M. D. Manju, D. Srinivas and P. Ratnasamy, Catal.
Lett., 2004, 97, 41–47; (j) J. S. Tian, J. Q. Wang, J. Y. Chen, J.
G. Fan, F. Cai and L. N. He, Appl. Catal., A, 2006, 301, 215–
221; (k) M. Yoshida, N. Hara and S. Okuyama, Chem.
Commun., 2000, 151–152; (l) K. Yamaguchi, Y. Wang, N.
Mizuno, Chem. Lett., 2012, 41, 633-635; (m) K. Yamaguchi, H.
Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara and N. Mizuno,
1
(a) G. A. Olah, A. Goeppert, G. K. S. Prakash, Beyond Oil and
Gas: The Methanol Economy, Wiley-VCH, Weinheim,
Germany, 2006; (b) J. Louie, Curr. Org. Chem., 2005,
23; (c) M. Mori, Eur. J. Org. Chem., 2007, 4981–4993; (d) T.
Sakakura, J. C. Choi, H. Yasuda, Chem. Rev., 2007, 107, 2365–
9, 605–
6
2
2
2
387; (e) M. Aresta, A. Dibenedetto, Dalton Trans., 2007,
975–2992; (f) A. Correa, R. Martin, Angew. Chem. Int. Ed.,
009, 48, 6201–6204; Angew. Chem., 2009, 121, 6317–6320;
(
3
g) S. N. Riduan, Y. Zhang, Dalton Trans., 2010, 39, 3347–
357; (h) A. Behr, G. Henze, Green Chem., 2011, 13, 25–39;
(
i) K. Huang, C. L. Sun, Z. J. Shi, Chem. Soc. Rev., 2011, 40
,
435–2452; (j) X. B. Lu, D. J. Darensbourg, Chem. Soc. Rev.,
012, 41, 1462–1484; (k) W. Z. Zhang, X. B. Lu, Chin. J. Catal.,
012, 33, 745–756; (l) L. Zhang, Z. M. Hou, Chem. Sci., 2013,
, 3395–3403; (m) W. F. Xiong, C. R. Qi, H. T. He, O. Y. Lu, M.
2
2
2
4
Catal. Sci. Technol., 2013, 3, 318–327; (n) T. Kimura, H.
,
Sunaba, K. Kamata and N. Mizuno, Inorg. Chem., 2012, 51
13001–13008.
7
(a) H. Goksu, H. Can, K. Sendil, M. S. Gultekin and O. Metin,
Appl. Catal. A, 2014, 488, 176–182; (b) H. Goksu, S. F. Ho, O.
Metin, K. Korkmaz, A. M. Garcia, M. S. Gultekin and S. Sun,
Zhang, H. F. Jiang, Angew. Chem. Int. Ed., 2015, 54, 3084–
087; Angew. Chem., 2015, 127, 3127–3130.
(a) L. Yang, H. Wang, ChemSusChem, 2014,
W. Stephan, G. Erker, Chem. Sci., 2014, , 2625–2641; (c) L. J.
Hounjet, C. B. Caputo, D. W. Stephan, Angew. Chem. Int. Ed.,
012, 51, 4714–4717; Angew. Chem., 2012, 124, 4792–4795;
d) C. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S.
Grimme, D. W. Stephan, G. Erker, Angew. Chem. Int. Ed.,
009, 48, 6643–6646; Angew. Chem., 2009, 121, 6770–6773;
e) C. B. Caputo, K. Zhu, V. N. Vukotic, S. J. Loeb, D. W.
3
2
7
, 962–998; (b) D.
ACS Catal., 2014, 4, 1777–1782; (c) U. B. Demirci and P.
5
Miele, Phys. Chem. Chem. Phys., 2014, 16, 6872–6885; (d) H.
Goksu, New J. Chem., 2015, 39, 8498–8504; (e) Z. Li, F. Zhai,
Q. Wan, Z. Liu, J. Shan, P. Li, A. A. Volinsky and X. Qu, RSC
Adv., 2014, 4, 18989–18997; (f) H. Liu, X. Wang, Y. Liu, Z.
Dong, G. Cao, S. Li and M. Yan, J. Mater. Chem. A, 2013, 1,
12527–12535.
(a) T. D. Nixon, M. K. Whittlesey and J. M. J. Williams,
Tetrahedron Lett., 2011, 52, 6652–6654; (b) F. Sen and G.
Gokagac, J. Phys. Chem. C, 2007, 111, 1467–1473; (c) H.
Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas and F. Sen, Catal.
Sci. Technol. 2015, DOI: 10.1039/c5cy01462j.
2
(
2
(
8
9
Stephan, Angew. Chem. Int. Ed., 2013, 52, 960–963; Angew.
Chem., 2013, 125, 994–997; (f) A. H. Liu, B. Yu, L. N. He,
Greenhouse Gases: Sci. Technol., 2015,
(a) A. Behr and V. A. Brehme, J. Mol. Catal. A: Chem., 2002,
87, 69–80; (b) F. L. Liao, Y. Q. Huang, J. W. Ge, W. R. Zheng,
5, 17–26.
3
1
(a) J. Pouessel, O. Jacquet and T. Cantat, ChemCatChem,
2013, 5, 3552–3556; (b) K. Weissermel, H. J. Arpe, Industrial
K. Tedsree, P. Collier, X. L. Hong and S. C. Tsang, Angew.
Chem., Int. Ed., 2011, 50, 2162–2165; (c) I. Kasatkin, P. Kurr,
B. Kniep, A. Trunschke and R. Schlogl, Angew. Chem., Int. Ed.,
rd
Organic Chemistry, 3 ed., Translated by C. R. Lindley, Wiley-
VCH, Weinheim, 1997.
2
007, 46, 7324–7327; (d) F. C. Meunier, Angew. Chem., Int. 10 (a) M. Kozak, Microbiol. Rev., 1983, 47, 1–45; (b) J. R.
Wisniewski, A. Zougman, M. Mann, Nucleic Acids Res., 2008,
Ed., 2011, 50, 4053–4054; (e) G. A. Olah, Angew. Chem., Int.
Ed., 2005, 44, 2636–2639; (f) S. Schimpf, A. Rittermeier, X. N.
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins