5
468
Y. Mikami et al. / Tetrahedron Letters 51 (2010) 5466–5468
3
4
5
6
.
.
.
.
Mitsudome, T.; Arita, S.; Mori, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew.
Chem., Int. Ed. 2008, 47, 7938.
Mitsudome, T.; Mikami, Y.; Mori, H.; Arita, S.; Mizugaki, T.; Jitsukawa, K.;
Kaneda, K. Chem. Commun. 2009, 3258.
Mikami, Y.; Noujima, A.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.
Chem. Lett. 2010, 39, 223.
(a) Wu, F.-L.; Ross, B. P.; McGeary, R. P. Eur. J. Org. Chem. 2010, 1989; (b)
Kocienski, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, Germany, 2005; (c)
Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th
ed.; John Wiley & Sons: Hoboken, New York, 2006.
Scheme 2. A 40 mmol-scale deoxygenation of trans-stilbene oxide using Ag/HT.
smoothly converted into the corresponding alkenes in high yields
without reduction of other reducible functionalities. Ag/HT was
easily separated from the reaction mixture and was reusable with
retention of its activity and selectivity. This chemoselective deoxy-
genation system using Ag/HT as a heterogeneous catalyst promises
to be a useful methodology for the deprotection of epoxides into
alkenes.
7.
(a) Corey, E. J.; Su, W. G. J. Am. Chem. Soc. 1987, 109, 7534; (b) Kraus, G. A.;
Thomas, P. J. J. Org. Chem. 1988, 53, 1395; (c) Johnson, W. S.; Plummer, M. S.;
Reddy, S. P.; Bartlett, W. R. J. Am. Chem. Soc. 1993, 115, 515.
8. (a) Vedejs, E.; Fuchs, P. L. J. Am. Chem. Soc. 1973, 95, 822; (b) Bissing, D. E.;
Speziale, A. J. J. Am. Chem. Soc. 1965, 87, 2683; (c) Clive, D. L. J.; Menchen, S. M. J.
Org. Chem. 1980, 45, 2347.
9
.
(a) Mangette, J. E.; Powell, D. R.; Firman, T. K.; West, R. J. Organomet. Chem.
1996, 521, 363; (b) Mangette, J. E.; Powell, D. R.; Calabrese, J. C.; West, R.
Organometallics 1995, 14, 4064.
1
0. (a) Righi, G.; Bovicelli, P.; Sperandio, A. Tetrahedron 2000, 56, 1733; (b)
Acknowledgments
Antonioletti, R.; Bovicelli, P.; Fezzolari, E.; Righi, G. Tetrahedron Lett. 2000, 41,
9
4
315; (c) Firouzabadi, H.; Iranpoor, N.; Jafarpour, M. Tetrahedron Lett. 2005, 46,
107; (d) Girard, P.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693; (e) Caputo,
This investigation was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Culture, Sports, Sci-
ence, and Technology of Japan. This work was also supported by
a Grant-in-Aid for Scientific Research on Priority Areas (No.
R.; Mangoni, L.; Neri, O.; Palumbo, G. Tetrahedron Lett. 1981, 22, 3551; (f)
Sonnet, P. E. J. Org. Chem. 1978, 43, 1842.
11. (a) Sharpless, K. B.; Umbreit, M. A.; Nieh, M. T.; Flood, T. C. J. Am. Chem. Soc.
972, 94, 6538; (b) Atagi, L. M.; Over, D. E.; McAlister, D. R.; Mayer, J. M. J. Am.
Chem. Soc. 1991, 113, 870; (c) Oh, K.; Knabe, W. E. Tetrahedron 2009, 65, 2966;
d) Kupchan, S. M.; Maruyama, M. J. Org. Chem. 1971, 36, 1187; (e) Mahesh, M.;
1
1
8065016, ‘Chemistry of Concerto Catalysis’) from the Ministry of
(
Education, Culture, Sports, Science, and Technology, Japan. TEM
analyses were carried out at Institute for NanoScience Design, Osa-
ka University. We thank Dr. Uruga, Dr. Tanida, Dr. Honma, Dr. Tan-
iguchi, and Dr. Hirayama (SPring-8) for XAFS measurements. Y.M.
and A.N. thank the JSPS Research Fellowships for Young Scientists.
They also express their special thanks to The Global COE (Center of
Excellence) Program ‘Global Education and Research Center for
Bio-Environmental Chemistry’ of Osaka University.
Murphy, J. A.; Wessel, H. P. J. Org. Chem. 2005, 70, 4118; (f) Schobert, R. Angew.
Chem., Int. Ed. Engl. 1988, 27, 855; (g) RajanBabu, T. V.; Nugent, W. A. J. Am.
Chem. Soc. 1994, 116, 986; (h) RajanBabu, T. V.; Nugent, W. A.; Beattie, M. S. J.
Am. Chem. Soc. 1990, 112, 6408; (i) McMurry, J. E.; Fleming, M. P. J. Org. Chem.
1975, 40, 2555; (j) McMurry, J. E.; Silvestri, M. G.; Fleming, M. P.; Hoz, T.;
Grayston, M. W. J. Org. Chem. 1978, 43, 3249; (k) Giering, W. P.; Rosenblum, M.;
Tancrede, J. J. Am. Chem. Soc. 1972, 94, 7170; (l) Rosenblum, M.; Saidi, M. R.;
Madhavarao, M. Tetrahedron Lett. 1975, 46, 4009; (m) Partra, A.;
Bandyopadhyay, M.; Mal, D. Tetrahedron Lett. 2003, 44, 2355.
12. For previous reports on the catalytic deoxygenation of epoxides, see: (a) Zhu,
Z.; Espenson, J. H. J. Mol. Catal. A 1995, 103, 87; (b) Gable, K. P.; Brown, E. C.
Synlett 2003, 2243; (c) Arterburn, J. B.; Liu, M.; Perry, M. C. Helv. Chim. Acta
2002, 85, 3225; (d) Itoh, T.; Nagano, T.; Sato, M.; Hirobe, M. Tetrahedron Lett.
Supplementary data
1989, 30, 6387; (e) Isobe, H.; Branchaud, B. P. Tetrahedron Lett. 1999, 40, 8747.
1
3. We recently reported a successful example of the catalytic deoxygenation of
epoxides using alcohols as reducing reagents, see: Mitsudome, T.; Noujima, A.;
Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2010,
4
9, 5545.
1
4. The time profile for the reduction of 1 is shown in Fig. 1S in Supplementary
References and notes
data.
1
5. We previously reported that the positive effect of the additional base and base
support was attributed to promote the formation of a metal-hydride species;
see: Refs. 13,16.
1
2
.
.
Mayer, D.; Aktiengesellschaft, H.. In Ullman’s Encyclopedia of Industrial
Chemistry; Wiley: New York, 2000; Vol. 12. p 609.
Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.
Angew. Chem., Int. Ed. 2008, 47, 138.
16. Kaneda, K.; Hiraki, M.; Imanaka, T.; Teranishi, S. J. Mol. Catal. 1981, 12, 385.
17. See Supplementary data for details.