Organic Process Research & Development
ARTICLE
hours of reaction time, and the MJOD reactor provides high
throughput for reactions and processes that require short reac-
tion time.
(17) L €o we, H.; Hessel, V.; L €o b, P.; Hubbard, S. Org. Process Res. Dev.
2006, 10, 1144–1152.
(18) Liu, S.; Fukuyama, T.; Sato, M.; Ryu, I. Org. Process Res. Dev.
2
004, 8, 477–481.
19) Panke, G.; Schawalbe, T.; Stirner, W.; Taghavi-Moghadam, S.;
Wille, G. Synthesis 2003, 18, 2827.
20) Kulkarni, A. A.; Nivangune, N. T.; Kalyani, V. S.; Joshi, R. A.;
Joshi, R. R. Org. Process Res. Dev. 2008, 12, 995–1000.
21) Brivio, M.; Verboom, W.; Reinhoudt, D. N. Lab Chip 2006, 6,
29–344.
22) Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem.
Future Development. In our laboratories we have several
advanced MJOD reactor prototypes running on a daily basis, and
we are also approaching finalizing the first commercial version of
the system. Several investigations are underway and indicate that
the MJOD reactor system can be utilized for telescoped reac-
tions, gasÀliquid reactions (molecular oxygen as oxidant), olefin
metathesis reactions, various reactions that need to be conducted
under protecting atmosphere (argon or nitrogen), and metal-
organic reactions that need low reaction temperature.
(
(
(
3
(
2007, 5, 733–740.
(23) Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467.
(
24) Wirth, T., Ed. Microreactors in Organic Synthesis; Wiley-VCH:
New York, 2008; pp 1À297.
25) Yoshida, J.; Nagaki, A.; Yamada, T. Chem.—Eur. J. 2008, 14,
450–7459.
26) Jensen, K. F. Chem. Eng. Sci. 2001, 56, 293.
(27) Greenway, G. M.; Haswell, S. J.; Morgan, D. O.; Skelton, V.;
Styring, P. Sens. Actuators, B 2000, 63, 153.
28) Saaby, S.; Knudsen, K. R.; Ladlow, M.; Ley, S. V. Chem.
Commun. 2005, 23, 2909.
29) Snyder, D. A.; Noti, C.; Seeberger, P. H.; Schael, F.; Bieber, T.;
Rimmel, G.; Ehrfeld, W. Helv. Chim. Acta 2005, 88, 1.
’
AUTHOR INFORMATION
(
Corresponding Author
7
*
E-mail: hans.bjorsvik@kj.uib.no. Telephone +47 55 58 34 52.
(
Fax +47 55 58 94 90.
(
’
ACKNOWLEDGMENT
(
Economic support from Innovation Norway and Bergen
Technology Transfer AS are acknowledged. Mr. Gianfranco
Liguori and Mr. Steinar Vatne are acknowledged for excellent
technical assistance realizing the various parts and sections that
constitute the MJOD reactor system.
(
(
30) Haswell, S. J.; O’Sullivan, B.; Styring, P. Lab Chip 2001, 1, 164.
31) De Mas, N.; Jackman, R. J.; Schmidt, M. A.; Jensen, K. F. In
Microreaction Technology - IMRET 5: Proceeding of the Fifth International
Conference on Microreaction Technology; Matlosz, M., Ehrfeld, W., Baselt,
J. P., Eds.; Springer: Berlin, 2002; p 60.
(
32) J €a hnisch, K.; Baerns, M.; Hessel, V.; Ehrfeld, W.; Golbig, K.;
’
REFERENCES
Haverkamp, V.; L o€ we, H.; Wille, C.; Guber, A. J. Fluorine Chem. 2000,
1
05, 117.
(
1) Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235–246.
(33) ThalesNano: http://thalesnano.com/.
(2) Traditionally, scale-up is associated with the development work
(34) Wada, Y.; Tanabe, K.; Saki, K. (Mitsubishi Chemical Co.). JP
that enables large production capacity transferring a synthesis or reaction
from small batch reactors or even laboratory flasks to stirred tank
reactors of large capacity of sometimes several cubic meters.
2005279422, 2005; Chem. Abstr. 2005, 143, 369197.
(35) Lee, C. C.; Sui, G. D.; Elizarov, A.; Shu, C. Y. J.; Shin, Y. S.;
(
(
3) Ritter, S. K. Chem. Eng. News 2001, 79 (29), 27–34.
4) (a) Hessel, V.; Hardt, S.; L €o we, H. Chemical Micro Process
Dooley, A. N.; Huang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.;
Witte, O. N.; Satyamurthy, N.; Heath, J. R; Phelps, M. E.; Quake, S. R.;
tseng, H. R. Science 2005, 310, 1793.
(36) Baumann, N.; Baxendale, I. R.; Kirschning, A.; Ley, S. V.;
Wegner, J. Heterocycles 2011, 82, 1297–1316.
Engineering: Fundamentals, Modelling and Reactions; Wiley-VCH: Weinheim,
004; pp 1À712. (b) Hessel, V.; L €o we, H.; M €u ller, A.; Kolb, G. Chemical
Micro Process Engineering: Processing and Plants; Wiley-VCH: Weinheim,
2
2
005; pp 1À681.
(37) Harvey, A. P.; Mackley, M. R.; Stonestreet, P. Ind. Eng. Chem.
Res. 2001, 40, 5371–5377.
(
5) Geyer, K.; Cod ꢀe e, J. D. C.; Seeberger, P. H. Chem.—Eur. J. 2006,
1
2, 8434.
(38) The input channel is prepared (flat bottom bearing female
thread 1/4À28 UNF) for connecting standard commercial available
flangeless nut and ferrule to the reactor body.
(
(
6) Africa-System, Syrris R. Ltd. (U.S.A.); http://www.syrris.com.
7) Ratner, D. M.; Murphy, E. R.; Jhunjhunwala, M.; Snyder, D. A.;
Jensen, K. F.; Seeberger, P. H. Chem. Commun. 2005, 5, 578.
(39) Standard swing clamps (o.d. 50 mm) for flange fittings as used
for vacuum lines and fittings for oil vacuum pumps.
(40) Several types of pumps were evaluated including piston pumps,
syringe pumps, and peristaltic pumps.
(8) Ehrfeld Mikroteknik, http://www.ehrfeld.com/english/.
(9) Ehrfeld, W.; Hessel; V. L €o we, H. Microreactors: New Technology
for Modern Chemistry; Wiley-VCH: Weinheim, 2000.
(
10) (a) Hansen, C. L.; Classen, S.; Berger, J. M.; Quake, S. R. J. Am.
(41) We elected to use a variable dc supply U = 0À24 V dc for this
Chem. Soc. 2006, 128, 3142. (b) Wang, B.; Zhao, Q.; Wang, F.; Gao, C.
Angew. Chem., Int. Ed. 2006, 45, 1560. (c) Duan, J.; Sun, L.; Liang, Z.;
Zhang, J.; Wang, H.; Zhang, L.; Zhang, W.; Zhang, Y. J. Chromatogr., A
purpose.
(42) (a) Using MATLAB, version 6; The Matwork, Inc.: Natick,
MA, 2000. (b) Using MATLAB Graphics, version 6; The Matwork, Inc.:
Natick, MA, 2000. (c) Hanselman, D.; Littlefield, B. Mastering MA-
TLAB: A Comprehensive Tutorial and Reference; Prentice-Hall Inc.;
Upper Saddle River, NJ, 1996.
2
006, 1006, 165.
11) van der Linden, J. J. M.; Hilberink, P. W.; Kronenburg, C. M. P.;
Kemperman, G. J. Org. Process Res. Dev. 2008, 12, 911–920.
12) Ducry, L.; Roberge, D. M. Org. Process Res. Dev. 2008, 12,
63–167.
(
(
(43) Taghavi-Moghadam, S.; Axel Kleemann, A; Golbig, K. G. Org.
Process Res. Dev. 2001, 5, 652–658.
1
(
13) Acke, D. R. J.; Stevens, C. V. Org. Process Res. Dev. 2006, 10,
(44) (a) Levenspiel, O.; Bischoff, K. B. Ind. Eng. Chem. 1959, 51,
1431–1434.(b) Denbigh, K. G.; Turner, J. C. R. Chemical Reactor Theory.
An Introduction, 3rd ed. Cambridge University Press: Cambridge, 1984;
pp 1À253.
4
17–422.
(
14) Hessel, V.; Hofmann, C; L €o b, P.; L €o hndorf, J.; L €o we, H.;
Ziogas, A. Org. Process Res. Dev. 2005, 9, 479–489.
15) Steinfeldt, N.; Abdallah, R.; Dingerdissen, U.; J €a hnisch, K. Org.
Process Res. Dev. 2007, 11, 1025–1031.
16) Wiles, C.; Watts, P.; Haswell, S. J.; Pombo-Villar, E. Org. Process
Res. Dev. 2004, 8, 28–32.
(
(45) (a) Paal, C. Ber. 1885, 18, 367. (b) Knorr, L. Ber. 1885, 18, 299.
(46) The PaalÀKnorr synthesis. Access Flow Application Notes.
No.1. http://www.micronit.com/assets/Downloads/Fast-Scale-Up-of-
Microreactor-Technology.pdf
(
1
008
dx.doi.org/10.1021/op2000699 |Org. Process Res. Dev. 2011, 15, 997–1009