C6D6, 298 K): δ (ppm) 24.3 (s, CHCH3), 26.4 (s, CH2 cyclo-
hexyl), 27.4 (s, CHCH3), 27.6 (d, JC–P = 10.7 Hz, CH2 cyclo-
hexyl), 30.3 (s, CH2 cyclohexyl), 33.6 (d, JC–P = 14.9 Hz, CH
cyclohexyl), 54.6 (s, C4 and C5), 129.4 (s, CH aromatic), 137.9
for financial support. Umicore AG is gratefully acknowledged
for gifts of palladium complexes.
2
(s, C aromatic), 221.8 (d, JC–P = 14.6 Hz, C2); 31P{1H}
Notes and references
(121.5 MHz, C6D6, 298 K): δ (ppm) 49.9 (s); Elem. Anal. Calcd
for C47H77N2O2PPd: C, 66.77; H, 8.84; N, 3.46. Found: C,
66.21; H, 8.82; N, 3.53.
1 M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph Series,
American Chemical Society, Washington, DC, 1990.
2 G. Cainelli and G. Cardillo, Chromium Oxidants in Organic Chemistry,
Springer, Berlin, 1984.
3 S. V. Ley and A. Madin, Comprehensive Organic Synthesis, ed.
B. M. Trost, I. Fleming and S. V. Ley, Pergamon, Oxford, 1991, vol. 7, 251.
4 (a) S. S. Stahl, Science, 2005, 309, 1824; (b) S. S. Stahl, Angew. Chem.,
Int. Ed., 2004, 43, 3400.
5 K. M. Gligorich and M. S. Sigman, Chem. Commun., 2009, 3854.
6 T. Nishimura, T. Onoue, K. Ohe and S. Uemura, J. Org. Chem., 1999, 64,
6750.
7 T. Nishimura, Y. Maeda, N. Kakiuchi and S. Uemura, J. Chem. Soc.,
Perkin Trans. 1, 2000, 1915.
8 T. Nishimura, N. Kakiuchi, T. Onoue, K. Ohe and S. Uemura, J. Chem.
Soc., Perkin Trans. 1, 2000, 4301.
9 G. J. Ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science, 2000,
287, 1636.
10 M. J. Schultz, C. C. Park and M. S. Sigman, Chem. Commun., 2002, 3034.
11 D. R. Jensen, M. J. Schultz, J. A. Mueller and M. S. Sigman, Angew.
Chem., Int. Ed., 2003, 42, 3810.
12 J. A. Mueller, C. P. Goller and M. S. Sigman, J. Am. Chem. Soc., 2004,
126, 9724.
13 M. J. Schultz, S. S. Hamilton, D. R. Jensen and M. S. Sigman, J. Org.
Chem., 2005, 70, 3343.
[Pd(η2-O2)(SIPr)(PPh3)] (2d). Quantitative yield. 1H NMR
(300 MHz, CD2Cl2, 298 K): δ (ppm) 0.73–1.54 (m, 24 H,
CH-CH3), 3.31 (br s, 4 H, CH-CH3), 4.07 (br s, 4 H, H4 and
H5), 7.07–7.14 (m, 8 H, aromatic), 7.19–7.26 (m, 8 H, aromatic),
7.30–7.36 (m, 5 H, aromatic); 13C{1H} (75.5 MHz, CD3OD,
298 K): δ (ppm) 24.0 (s, CH-CH3), 26.9 (br s, CH-CH3), 30.3
(br s, CH-CH3), 56.3 (s, C4 and C5), 129.4 (s, CH aromatic),
129.6 (s, CH aromatic), 130.8 (s, CH aromatic), 131.6 (d, JC–P
=
1.5 Hz, CH aromatic), 132.4 (s, CH aromatic), 133.0 (s, CH aro-
matic), 135.0 (s, C aromatic), 135.1 (s, C aromatic), 137.4 (s, C
2
aromatic), 210.5 (d, JC–P = 20.6 Hz, C2); 31P{1H} (121.5 MHz,
CD2Cl2, 298 K): δ (ppm) 30.7 (s). Elem. Anal. Calcd for
C45H53N2O2PPd: C, 68.22; H, 6.87; N, 3.54. Found: C, 68.07;
H, 7.27; N, 3.60.
Synthesis of [Pd(OAc)2(IPr)(PCy3)] (3). In a Schlenk flask,
[Pd(OAc)(η2-OAc)(IPr)]28 (250 mg, 0.407 mmol) and PCy3
(125.8 mg, 0.448 mmol) were stirred in CH2Cl2 (10 mL) at
room temperature for 30 min. The volume reduced to 1 mL
in vacuo and pentane (5 mL) was added. The mixture was con-
centrated to 3 mL, the precipitate was collected by filtration and
washed with pentane (2 × 5 mL). The product was obtained as a
pale yellow powder (300 mg, 80%). 1H NMR (400 MHz,
CD2Cl2, 298 K): δ (ppm) 0.95–1.29 (m, 11 H, Cy), 1.07 (d,
3JH–H = 6.8 Hz, 12 H, CH-CH3), 1.32–1.45 (m, 6 H, Cy), 1.40
14 For NHC complexes in oxidation reactions, see: (a) V. Jurčík and
C. S. J. Cazin, in N-Heterocyclic Carbenes in Transition Metal Catalysis
and Organocatalysis, ed. C. S. J. Cazin, Springer, London, 2011, vol. 32,
p. 237; (b) M. M. Rogers and S. S. Stahl, in N-Heterocyclic Carbenes in
Transition Metal Catalysis, ed. F. Glorius, Springer, New York, 2006,
vol. 21, p. 21.
15 V. Jurčík, S. P. Nolan and C. S. J. Cazin, Chem.–Eur. J., 2009, 15, 2509.
16 S. Fantasia, J. D. Egbert, V. Jurčík, C. S. J. Cazin, H. Jacobsen,
L. Cavallo, D. M. Heinekey and S. P. Nolan, Angew. Chem., Int. Ed.,
2009, 48, 5182.
17 S. Fantasia and S. P. Nolan, Chem.–Eur. J., 2008, 14, 6987.
18 For a recent publication of Pd(PR3)2 complexes reacting with oxygen see:
A. G. Sergeev, H. Neumann, A. Spannenberg and M. Beller, Organo-
metallics, 2010, 29, 3368.
3
(d, JH–H = 6.6 Hz, 12 H, CH-CH3), 1.50–1.55 (m, 2 H, Cy),
1.58 (s, 6 H, CH3COO), 1.60–1.74 (m, 14 H, Cy), 3.19 (sept,
19 In addition to ref. 18, other examples of phosphine-containing palladium
complexes have shown stability towards oxygen: (a) M. Matsumoto,
K. Yoshioka, K. Nakatsu, T. Yoshida and S. Otsuka, J. Am. Chem. Soc.,
1974, 96, 3322; (b) T. Yoshida and S. Otsuka, J. Am. Chem. Soc., 1977,
99, 2134.
20 For reactions of homoleptic palladium–NHC complexes with air and
oxygen, see: (a) X. Cai, S. Majumdar, G. C. Fortman, C. S. J. Cazin,
A. M. Z. Slawin, C. Lehermitte, R. Prabhakar, M. Germain, T. Pallucio,
S. P. Nolan, E. Rybak-Akimova, M. Temprado, B. K. Captain and
C. D. Hoff, J. Am. Chem. Soc., 2011, 133, 1290; (b) M. Yamashita,
K. Goto and T. Kawashima, J. Am. Chem. Soc., 2005, 127, 7294;
(c) M. M. Konnick, I. A. Guzei and S. S. Stahl, J. Am. Chem. Soc., 2004,
126, 10212.
3JH–H = 6.6 Hz, 4 H, CH-CH3), 7.06 (s, 2 H, CH aromatic), 7.31
3
3
(d, JH–H = 7.6 Hz, 4 H, CH aromatic), 7.44 (t, JH–H = 7.7 Hz,
2 H, CH aromatic); 13C{1H} (100.6 MHz, CD2Cl2, 298 K): δ
(ppm) 23.2 (s, CH3), 23.9 (s, CH3), 26.6 (s, CH3), 26.9 (s, CH2),
28.4 (s, CH2), 28.5 (s, CH), 28.5 (s, CH2), 29.4 (s, CH2), 32.4
1
(d, JC–P = 16.5 Hz, P-CH), 124.1 (s, Ar-CH), 124.6 (d, J = 4.5
Hz, C4 and C5), 129.7 (s, Ar-CH), 136.8 (s, Ar-C), 147.0 (s,
Ar-C), 174.2 (s, C2); 31P{1H} (162.0 MHz, CD2Cl2, 298 K): δ
(ppm) 19.6 (s).
21 S. S. Stahl, J. L. Thorman, R. C. Nelson and M. A. Kozee, J. Am. Chem.
Soc., 2001, 123, 7188.
22 (a) C. J. Cramer, W. B. Tolman, K. H. Theopold and A. L. Rheingold,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3635; (b) J. M. Praetorius,
D. P. Allen, R. Wang, J. D. Webb, F. Grein, P. Kennepohl and
C. M. Crudden, J. Am. Chem. Soc., 2008, 130, 3724.
23 B. A. Steinhoff, A. E. King and S. S. Stahl, J. Org. Chem., 2006, 71, 1861.
24 The presence of excess AcOH may inhibit catalysis and sequester the
active catalytic species in a less active form, namely, as a species of poss-
ible composition [Pd(PR3)(NHC)(OAc)2].
25 For solvent and other optimisation details, see ESI.†
26 B. A. Steinhoff, I. A. Guzei and S. S. Stahl, J. Am. Chem. Soc., 2004,
126, 11268.
27 M. J. Schultz, R. S. Alder, W. Zierkiewicz, T. Privalov and M. S. Sigman,
J. Am. Chem. Soc., 2005, 127, 8499.
General procedure for the oxidation catalysis
A Schlenk flask was charged with [Pd(IPr)(PCy3)] (1a) (3.9 mg,
0.005 mmol), 4 Å molecular sieves (50 mg) and the substrate
(if solid, 1 mmol). The inert atmosphere was exchanged for
oxygen by three evacuation-backfill cycles. Solvent (2 mL) and
AcOH (1.5 μL, 0.025 mmol) were then added, followed by the
substrate (if liquid, 1 mmol). The reaction mixture was stirred at
60 °C, monitored by GC, and purified by flash column
chromatography (SiO2, pentane).
We thank the EPSRC, the Royal Society (University Research
Fellowship to CSJC) and the EaStCHEM School of Chemistry
28 M. S. Viciu, E. D. Stevens, J. L. Petersen and S. P. Nolan, Organo-
metallics, 2004, 23, 3752.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 12619–12623 | 12623