A. Bhattacharya et al. / Tetrahedron Letters 47 (2006) 3221–3223
3223
M. R.; Harrison, J. R.; Moody, C. J. J. Chem. Soc., Perkin
Trans. 1 2001, 955; (k) Blackie, J. A.; Turner, N. J.; Wells,
A. S. Tetrahedron Lett. 1997, 38, 3043.
of the utility of the surfactant-mediated solvent-free
technology in organic synthesis.
4. The program was aimed at giving the BS/MS level students
exposure to pharmaceutical process R&D in an academic
setting. Chemical & Engineering News; Education Concen-
trate pp 41, July 23 issue, 2001.
Acknowledgements
Financial support provided by the Petroleum Research
Fund (PRF), National Institute of Health (NIH), Welch
Foundation, and Bristol Myers Squibb Corporation is
gratefully acknowledged.
5. (a) Hwuk, J. R.; Wong, F. F.; Shiao, M.-J. J. Org. Chem.
1992, 57, 5254; (b) Shiao, J.-J.; Long-Li, L.; Wei-Shan, K.;
Lin, P.-Y.; Hwu, J. R. J. Org. Chem. 1993, 58, 4742; (c) The
formation of nitrosobenzene via an alternate pathway
involving the nucleophilic attack of RS(À) on the oxygen of
the nitro functionality cannot be ruled out.; (d) Average
bond energy of C–S is 65 kcal/mol and C–C is 83 kcal/mol;
Data obtained from Michigan State University—Organic
gous O- to C–acyl migration, see Baker–Venkataraman
rearrangement: (e) Bowden, K.; Chehel-Amiran, M. J.
Chem. Soc., Perkin Trans. 2 1986, 2039; (f) An alternate
mechanism could involve S–S bond formation thereby
delivering two electrons in the form of a hydride (HÀ). The
S–S bond formation has precedence in peptide chemistry of
cystein. The resulting dithiane can act as an effective
acylating agent.
References and notes
1. (a) Bhattacharya, A. Abstracts of Papers, 229th National
Meeting of the American Chemical Society, San Diego,
CA, 2005, ORGN-478.; (b) Bhattacharya, A.; Purohit, V.
C.; Suarez, V.; Tichkule, R.; Parmer, G.; Rinaldi, F.
Tetrahedron Lett. 2006, 47, 1861.
2. Bhattacharya, A.; Purohit, V. C.; Rinaldi, F. Org. Proc.
Res. Dev. 2003, 7, 254.
3. For traditional two-step synthesis of amides see: (a)
Nishimura, S. Bull. Chem. Soc. Jpn. 1961, 34, 32; (b)
Adams, R.; Cohen, F. L. Org. Syn. Coll. 1932, 1, 240; (c)
Mendennhall, G. D.; Smith, P. A. S. Org. Syn. Coll. 1973,
5, 829; (d) Adkins, H. R. Connar. J. Am. Chem. Soc. 1931,
53, 1091; (e) Davies, R. R.; Hodgson, H. H. J. Chem. Soc.
1943, 281; (f) Broadbent, H. S.; Slaugh, L. H.; Jarvis, N. L.
J. Am. Chem. Soc. 1954, 76, 1519; (g) Tsukinoki, T.;
Tsuzuki, H. Green. Chem. 2001, 3, 37–38; (h) Hodgson, H.
H.; Whitehurst, J. S. J. Am. Chem. Soc. 1945, 202; (i)
Wang, L.; Zhou, L.; Zhang, Y. Synlett 1999, 1065; (j) Pitts,
6. (a) All of the compounds gave a 13C resonance of
169 2 ppm, indicative of the amide carbon and
a
resonance at 24 2 ppm indicative of the acetamide
methyl. The 13C and 1H NMR spectra were consistent with
the predictions made by CNMR and HNMR programs
(ACD/Labs,V8.0); (b) For all the compounds GCMS
analysis (Shimadzu QP5050A) in EI mode provided simi-
larity index match of >90% compared to the authentic
samples in the NIST-98 database.