pubs.acs.org/joc
Synthesis of Enamides via CuI-Catalyzed Reductive
Acylation of Ketoximes with NaHSO3
SCHEME 1. Strategies for the Synthesis of Enamides
,
Zheng-Hui Guan,* Zhi-Yuan Zhang, Zhi-Hui Ren,
†
†
†
†
Yao-Yu Wang, and Xumu Zhang
‡
†
Key Laboratory of Synthetic and Natural Functional
Molecule Chemistry of Ministry of Education, Department
of Chemistry & Materials Science, Northwest University,
Xi’an 710069, P. R. China, and Department of Chemistry
‡
and Chemical Biology, Rutgers University, Piscataway,
New Jersey 08854, United States
In addition to transition-metal-catalyzed cross-coupling
4
reactions (eqs 1 and 2) and addition of an organometallic
Received November 9, 2010
5
6
reagent to a nitrile (eq 3), reductive acylation of ketoximes
eq 4) has proven to be the most direct approach for the
(
synthesis of enamides (Scheme 1). Iron powder was initially
used as the stoichiometric reducing reagent in this trans-
6
formation. However, this procedure usually involved a un-
6
,7
controllable exothermic reaction and low yields. Recently,
alternative protocols for reductive acylation of ketoximes
8
have emerged with the use of pyrophoric Et P or Fe(OAc)
7
2
3
as the stoichiometric reducing reagents. We have previously
developed the Rh/C-catalyzed hydroacylation of ketoximes
9
for the preparation of enamides. Despite these efforts, the
CuI-catalyzed reductive acylation of ketoximes for pre-
paration of enamides was reported. A broad scope of
enamides was obtained in high yields with NaHSO used
development of a practical catalytic procedure for the synth-
esis of enamides under mild reaction conditions is still
required. In connection with the recent investigation of Cu-
3
as the terminal reductant.
1
0-12
catalyzed oxime transformations,
we envision that it
may be possible to conduct a catalytic reductive acylation
process using an inexpensive Cu catalyst and a proper
reductant. In this paper, we report a practical catalytic
process for the CuI-catalyzed reductive acylation of ketox-
imes employing NaHSO as the economical terminal reduc-
3
tant. This process proceeds under mild reaction conditions
and gives a broad scope of enamides in high yields.
Enamides and their derivatives are versatile and powerful
building blocks in organic synthesis, especially for the en-
antioselective hydrogenation to prepare various chiral
1
amines and for stereoselective C-C and C-N bond-for-
mation reactions. Additionally, the enamide moiety is also a
key substructure in various classes of natural products and
2
Acetophenone oxime 1a was chosen as a test substrate in
the initial experiments to optimize the reaction conditions. A
variety of formate salts such as HCO Na, HCO K, and
3
pharmaceutical lead compounds. There are a number of
methods for the synthesis of enamides; however, enamide
formation in a practical manner is still a challenge.
2
2
HCO NH were screened as the reducing reagent with CuI
2
4
(
1) (a) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753. (b)
Zhang, X.; Huang, K.; Hou, G.; Cao, B.; Zhang, X. Angew. Chem., Int. Ed.
010, 49, 6421. (c) Erre, G.; Enthaler, S.; Junge, K; Addis, D.; Beller, M. Adv.
Synth. Catal. 2009, 351, 1437. (d) Shi, L.; Wang, X.; Sandoval, C. A.; Wang,
Z.; Li, H.; Wu, J.; Yu, L.; Ding, K. Chem.;Eur. J. 2009, 15, 9855. (e)
Imamoto, T.; Itoh, T.; Yoshida, K.; Gridnev, I. D. Chem. Asian J. 2008, 3,
(5) (a) O’Shea, P. D.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau,
C.; Roy, A.; Shultz, C. S. J. Org. Chem. 2009, 74, 4547. (b) Savarin, C. G.;
Boice, G. N.; Murry, J. A.; Corley, E.; DiMichele, L.; Hughes, D. Org. Lett.
2006, 8, 3903 and references therein.
(6) (a) Hughes, R. A.; Thompson, S. P.; Alcaraz, L.; Moody, C. J. J. Am.
Chem. Soc. 2005, 127, 15644. (b) Zhu, G.; Casalnuovo, A. L.; Zhang, X.
J. Org. Chem. 1998, 63, 8100. (c) Burk, M. J.; Casy, G.; Johnson, N. B. J. Org.
Chem. 1998, 63, 6084.
2
1
636. (f) Hu, A. G.; Fu, Y.; Xie, J.; Zhou, H.; Wang, L. X.; Zhou, Q.-L.
Angew. Chem., Int. Ed. 2002, 41, 2348. (g) Gridnev, I. D.; Yasutake, M.;
Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 123, 5268.
(2) (a) Chang, L.; Kuang, Y.; Qin, B.; Zhou, X.; Liu, X.; Lin, L.; Feng, X.
Org. Lett. 2010, 12, 2214. (b) Matsubara, R.; Kobayashi, S. Acc. Chem. Res.
(7) Tang, W.; Capacci, A.; Sarvestani, M.; Wei, X.; Yee, N. K.; Senanayake,
C. H. J. Org. Chem. 2009, 74, 9528.
2
2
008, 41, 292. (c) Terada, M.; Sorimachi, K. J. Am. Chem. Soc. 2007, 129,
92. (d) Jia, Y.-X.; Zhong, J.; Zhu, S.-F.; Zhang, C.-M.; Zhou, Q.-L. Angew.
(8) Zhao, H.; Vandenbossche, C. P.; Koenig, S. G.; Singh, S. P.; Bakale,
R. P. Org. Lett. 2008, 10, 505.
Chem., Int. Ed. 2007, 46, 5565. (e) Terada, M.; Machioka, K.; Sorimachi, K.
Angew. Chem., Int. Ed. 2006, 45, 2254.
(9) Guan, Z.-H.; Huang, K.; Yu, S.; Zhang, X. Org. Lett. 2009, 11, 481.
(10) (a) Liu, S.; Liebeskind, L. S. J. Am. Chem. Soc. 2008, 130, 6918. (b)
Zhang, Z.; Yu, Y.; Liebeskind, L. S. Org. Lett. 2008, 10, 3005. (c) Liu, S.; Yu,
Y.; Liebeskind, L. S. Org. Lett. 2007, 9, 1947.
(11) (a) Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676. (b)
Gerfaud, T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2009, 48, 572. (c)
Zaman, S.; Mitsuru, K.; Ab, A. D. Org. Lett. 2005, 7, 609.
(12) (a) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. 2005, 4505. (b)
Narasaka, K. Pure Appl. Chem. 2002, 74, 143.
(3) (a) Coleman, R. S.; Liu, P.-H. Org. Lett. 2004, 6, 577. (b) Vidal, J. P.;
Escale, R.; Girard, J. P.; Rossi, J. C.; Chantraine, J. M.; Aumelas, A. J. Org.
Chem. 1992, 57, 5857.
(
4) (a) Bolshan, Y.; Batey, R. A. Angew. Chem., Int. Ed. 2008, 47, 2109. (b)
Klapars, A.; Campos, K. R.; Chen, C.-y.; Volante, R. P. Org. Lett. 2005, 7,
185. (c) Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809. (d) Jiang, L.; Job,
G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.
1
DOI: 10.1021/jo1022348
r 2010 American Chemical Society
Published on Web 12/14/2010
J. Org. Chem. 2011, 76, 339–341 339