10.1002/anie.201808890
Angewandte Chemie International Edition
COMMUNICATION
[7]
[8]
U. Nubbemeyer, in Stereoselective Heterocyclic Synthesis III (Ed.: P.
Metz), Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 125–196.
For exceptional work enabling N+3 expansion, see: a) S. Kim, G. H. Joe,
J. Y. Do, J. Am. Chem. Soc. 1993, 115, 3328; b) L. Benati, D. Nanni, C.
Sangiorgi, P. Spagnolo, J. Org. Chem. 1999, 64, 7836.
protocol exhibits broad substrate scope, good functional group
tolerance, high yield, and mild reaction conditions, all of which
warrant a great potential for wide application in preparation of
medium-sized lactams. Further versatile transformations of the
obtained medium-sized lactams, particularly the one-step ring
expansion to macrolactams, have also been demonstrated to
ensure a broad impact of this methodology in various related
areas. Detailed mechanistic studies revealed a carboxylic acid-
promoted pathway for generation of amidyl radical with I(III)
reagents under visible light irradiation conditions.
[9]
L. Zhou, Z. Li, Y. Zou, Q. Wang, I. A. Sanhueza, F. Schoenebeck, A.
Goeke, J. Am. Chem. Soc. 2012, 134, 20009.
[10] a) Z.-L. Li, X.-H. Li, N. Wang, N.-Y. Yang, X.-Y. Liu, Angew. Chem. Int.
Ed. 2016, 55, 15100; Angew. Chem. 2016, 128, 15324; b) L. Li, Z.-L. Li,
F.-L. Wang, Z. Guo, Y.-F. Cheng, N. Wang, X.-W. Dong, C. Fang, J. Liu,
C. Hou, B. Tan, X.-Y. Liu, Nat. Commun. 2016, 7, 13852; c) L. Li, Z.-L.
Li, Q.-S. Gu, N. Wang, X.-Y. Liu, Sci. Adv. 2017, 3, e1701487.
[11] For selected reviews on radical reactions, see: a) E. Merino, C. Nevado,
Chem. Soc. Rev. 2014, 43, 6598; b) Y. Zeng, C. Ni, J. Hu, Chem. Eur. J.
2015, 22, 3210; c) A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2015,
55, 58; Angew. Chem. 2015, 128, 58; d) J. Xuan, A. Studer, Chem. Soc.
Rev. 2017, 46, 4329; e) W. Li, W. Xu, J. Xie, S. Yu, C. Zhu, Chem. Soc.
Rev. 2018, 47, 654.
Acknowledgements
Financial support from the National Natural Science Foundation
of China (nos. 21722203, 21831002, 21801116 and 21572096),
Shenzhen special funds for the development of biomedicine,
internet, new energy, and new material industries
(JCYJ20170412152435366 and JCYJ20170307105638498), and
Shenzhen Nobel Prize Scientists Laboratory Project (C17213101)
is greatly appreciated.
[12] For selected reviews, see: a) C. K. Prier, D. A. Rankic, D. W. C.
MacMillan, Chem. Rev. 2013, 113, 5322; b) J.-R. Chen, X.-Q. Hu, L.-Q.
Lu, W.-J. Xiao, Acc. Chem. Res. 2016, 49, 1911; c) M. N. Hopkinson, A.
Tlahuext-Aca, F. Glorius, Acc. Chem. Res. 2016, 49, 2261; d) N. A.
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075; e) K. L. Skubi,
T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035; f) D. Staveness,
I. Bosque, C. R. J. Stephenson, Acc. Chem. Res. 2016, 49, 2295.
[13] For a 1,2-(hetero)aryl migration involving aminyl radical, see: a) S. Kim,
J. Y. Do, J. Chem. Soc., Chem. Commun. 1995, 1607; for 1,4-aryl
migrations involving sulfonamidyl radical, see: b) T. Zhou, F.-X. Luo, M.-
Y. Yang, Z.-J. Shi, J. Am. Chem. Soc. 2015, 137, 14586; c) W. Shu, A.
Genoux, Z. Li, C. Nevado, Angew. Chem. Int. Ed. 2017, 56, 10521;
Angew. Chem. 2017, 129, 10657.
Keywords: amidyl radical • C–C bond cleavage • ketones •
medium-sized lactams • ring expansion
[1]
[2]
P. A. Evans, A. B. Holmes, Tetrahedron 1991, 47, 9131.
a) H. Zhang, S. Qiu, P. Tamez, G. T. Tan, Z. Aydogmus, N. V. Hung, N.
M. Cuong, C. Angerhofer, D. Doel Soejarto, J. M. Pezzuto, H. H. S. Fong,
Pharm. Biol. 2002, 40, 221; b) J. H. Cardellina II, F.-J. Marner, R. E.
Moore, Science 1979, 204, 193; c) D. J. Abraham, R. D. Rosenstein, R.
L. Lyon, H. H. S. Fong, Tetrahedron Lett. 1972, 13, 909; d) N. D. Adams,
M. G. Darcy, D. Dhanak, K. J. Duffy, D. M. Fitch, S. D. Knight, K. A.
Newlander, A. N. Shaw (Smithkline Beecham Corporation), WO
2006113432 A2, 2006.
[14] The X-ray crystallographic coordinates for 12 has been deposited at the
Cambridge Crystallographic Data Centre (CCDC), under deposition
number CCDC 1831168. These data can be obtained free of charge from
The
Cambridge
Crystallographic
Data
Centre
via
[15] For selected reviews, see: a) T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016,
45, 3069; b) J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev.
2016, 45, 2044; for selected recent examples, see: c) H. Zhang, Y. Song,
J. Zhao, J. Zhang, Q. Zhang, Angew. Chem. Int. Ed. 2014, 53, 11079;
Angew. Chem. 2014, 126, 11259; d) G. Zheng, Y. Li, J. Han, T. Xiong,
Q. Zhang, Nat. Commun. 2015, 6, 7011; e) G. J. Choi, Q. Zhu, D. C.
Miller, C. J. Gu, R. R. Knowles, Nature 2016, 539, 268; f) Q. Zhu, D. E.
Graff, R. R. Knowles, J. Am. Chem. Soc. 2018, 140, 741; g) J. C. K. Chu,
T. Rovis, Nature 2016, 539, 272; h) E. Ito, T. Fukushima, T. Kawakami,
K. Murakami, K. Itami, Chem 2017, 2, 383; i) X. Wang, D. Xia, W. Qin, R.
Zhou, X. Zhou, Q. Zhou, W. Liu, X. Dai, H. Wang, S. Wang, L. Tan, D.
Zhang, H. Song, X.-Y. Liu, Y. Qin, Chem 2017, 2, 803; j) J. Heng, S.
Armido, Angew. Chem. Int. Ed., doi:10.1002/anie.201804966; Angew.
Chem., doi:10.1002/ange.201804966.
[3]
[4]
G. Rousseau, Tetrahedron 1995, 51, 2777.
For examples using ring-closing olefin metathesis, see a review: H. M. A.
Hassan, Chem. Commun. 2010, 46, 9100.
[5]
For selected recent examples, see: a) C. Guo, M. Fleige, D. Janssen-
Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138, 7840; b)
L.-C. Yang, Z.-Q. Rong, Y.-N. Wang, Z. Y. Tan, M. Wang, Y. Zhao,
Angew. Chem. Int. Ed. 2017, 56, 2927; Angew. Chem. 2017, 129, 2973;
c) Y.-N. Wang, L.-C. Yang, Z.-Q. Rong, T. L. Liu, R. Liu, Y. Zhao, Angew.
Chem. Int. Ed. 2018, 57, 1596; Angew. Chem. 2018, 130, 1612.
For selected reviews, see: a) H. Stach, M. Hesse, Tetrahedron 1988, 44,
1573; b) M. Hesse, Ring Enlargement in Organic Chemistry, VCH,
Weinheim, 1991; c) P. Dowd, W. Zhang, Chem. Rev. 1993, 93, 2091; d)
C. J. Roxburgh, Tetrahedron 1993, 49, 10749; e) J. R. Donald, W. P.
Unsworth, Chem. Eur. J. 2017, 23, 8780; for selected recent examples,
see: f) H. Lu, X. Yuan, S. Zhu, C. Sun, C. Li, J. Org. Chem. 2008, 73,
8665; g) F. Kopp, C. F. Stratton, L. B. Akella, D. S. Tan, Nat. Chem. Biol.
2012, 8, 358; h) W. Zhao, H. Qian, Z. Li, J. Sun, Angew. Chem. Int. Ed.
2015, 54, 10005; Angew. Chem. 2015, 127, 10143; i) C. Kitsiou, J. J.
Hindes, P. I'Anson, P. Jackson, T. C. Wilson, E. K. Daly, H. R. Felstead,
P. Hearnshaw, W. P. Unsworth, Angew. Chem. Int. Ed. 2015, 54, 15794;
Angew. Chem. 2015, 127, 16020; j) J. E. Hall, J. V. Matlock, J. W. Ward,
K. V. Gray, J. Clayden, Angew. Chem. Int. Ed. 2016, 55, 11153; Angew.
Chem. 2016, 128, 11319; k) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan, Y.-L.
Guo, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 4015; Angew. Chem.
2017, 129, 4073.
[6]
[16] a) K. C. Nicolaou, P. S. Baran, Y.-L. Zhong, S. Barluenga, K. W. Hunt,
R. Kranich, J. A. Vega, J. Am. Chem. Soc. 2002, 124, 2233; b) E.
Martinez, II, M. Newcomb, J. Org. Chem. 2006, 71, 557; c) D. C. Miller,
G. J. Choi, H. S. Orbe, R. R. Knowles, J. Am. Chem. Soc. 2015, 137,
13492.
[17] a) H. Huang, G. Zhang, Y. Chen, Angew. Chem. Int. Ed. 2015, 54, 7872;
Angew. Chem. 2015, 127, 7983; b) G.-X. Li, C. A. Morales-Rivera, Y.
Wang, F. Gao, G. He, P. Liu, G. Chen, Chem. Sci. 2016, 7, 6407.
[18] For examples reporting generation of amidyl radical by high valent iodine
reagents, see 16a. Also see: I. Tellitu, A. Urrejola, S. Serna, I. Moreno,
M. T. Herrero, E. Domínguez, R. SanMartin, A. Correa, Eur. J. Org.
Chem. 2007, 2007, 437.
This article is protected by copyright. All rights reserved.