Inorganic Chemistry
Article
(20) Huang, L.; He, M.; Chen, B.; Hu, B. A mercapto functionalized
magnetic Zr-MOF by solvent-assisted ligand exchange for Hg2+
removal from water. J. Mater. Chem. A 2016, 4, 5159−5166.
(21) Liang, W.; Coghlan, C. J.; Ragon, F.; Rubio-Martinez, M.;
D’Alessandro, D. M.; Babarao, R. Defect engineering of UiO-66 for
CO2 and H2O uptake − a combined experimental and simulation
study. Dalton Trans. 2016, 45, 4496−4500.
(22) Pereira, C. F.; Howarth, A. J.; Vermeulen, N. A.; Paz, F. A. A.;
Tome, J. P. C.; Hupp, J. T.; Farha, O. K. Towards hydroxamic acid
linked zirconium metal−organic frameworks. Mater. Chem. Front.
2017, 1, 1194−1199.
(23) Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M.
Postsynthetic ligand exchange as a route to functionalization of ‘inert’
metal−organic frameworks. Chem. Sci. 2012, 3, 126−130.
(24) Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M.
Postsynthetic Ligand and Cation Exchange in Robust Metal−Organic
Frameworks. J. Am. Chem. Soc. 2012, 134, 18082−18088.
(25) Karagiaridi, O.; Vermeulen, N. A.; Klet, R. C.; Wang, T. C.;
Moghadam, P. Z.; Al-Juaid, S. S.; Stoddart, J. F.; Hupp, J. T.; Farha, O.
K. Functionalized Defects through Solvent-Assisted Linker Exchange:
Synthesis, Characterization, and Partial Postsynthesis Elaboration of a
Metal−Organic Framework Containing Free Carboxylic Acid
Moieties. Inorg. Chem. 2015, 54, 1785−1790.
(26) Li, L.-J.; Liao, P.-Q.; He, C.-T.; Wei, Y.-S.; Zhou, H.-L.; Lin, J.-
M.; Li, X.-Y.; Zhang, J.-P. Grafting alkylamine in UiO-66 by charge-
assisted coordination bonds for carbon dioxide capture from high-
humidity flue gas. J. Mater. Chem. A 2015, 3, 21849−21855.
(27) Shearer, G. C.; Vitillo, J. G.; Bordiga, S.; Svelle, S.; Olsbye, U.;
Lillerud, K. P. Functionalizing the Defects: Postsynthetic Ligand
Exchange in the Metal Organic Framework UiO-66. Chem. Mater.
2016, 28, 7190−7193.
(28) Epley, C. C.; Love, M. D.; Morris, A. J. Characterizing Defects in
a UiO-AZB Metal−Organic Framework. Inorg. Chem. 2017, 56,
13777−13784.
(29) Sun, Y.-J.; Huang, Q.-Q.; Zhang, J.-J. Series of Structural and
Functional Models for the ES (Enzyme−Substrate) Complex of the
Co(II)-Containing Quercetin 2,3-Dioxygenase. Inorg. Chem. 2014, 53,
2932−2942.
(30) Garibay, S. J.; Cohen, S. M. Isoreticular synthesis and
modification of frameworks with the UiO-66 topology. Chem.
Commun. 2010, 46, 7700−7702.
(31) Gross, A. F.; Sherman, E.; Mahoney, S. L.; Vajo, J. J. Reversible
Ligand Exchange in a Metal−Organic Framework (MOF): Toward
MOF-Based Dynamic Combinatorial Chemical Systems. J. Phys. Chem.
A 2013, 117, 3771−3776.
(32) Taddei, M.; Tiana, D.; Casati, N.; van Bokhoven, J. A.; Smit, B.;
Ranocchiari, M. Mixed-linker UiO-66: structure−property relation-
ships revealed by a combination of high-resolution powder X-ray
diffraction and density functional theory calculations. Phys. Chem.
Chem. Phys. 2017, 19, 1551−1559.
(33) Choi, S.; Kim, T.; Ji, H.; Lee, H. J.; Oh, M. Isotropic and
Anisotropic Growth of Metal−Organic Framework (MOF) on MOF:
Logical Inference on MOF Structure Based on Growth Behavior and
Morphological Feature. J. Am. Chem. Soc. 2016, 138, 14434−14440.
(34) During the review process, a similar concept of core−shell type
MOF preparation of ligand PSE has been published: Boissonnault, J.
A.; Wong-Foy, A. G.; Matzger, A. J. Core−Shell Structures Arise
Naturally During Ligand Exchange in Metal−Organic Frameworks. J.
Am. Chem. Soc. 2017, 139, 14841−14844.
(35) Koh, K.; Wong-Foy, A. G.; Matzger, A. J. MOF@MOF:
microporous core−shell architectures. Chem. Commun. 2009, 6162−
6164.
(36) Yoo, Y.; Jeong, H.-K. Heteroepitaxial Growth of Isoreticular
Metal−Organic Frameworks and Their Hybrid Films. Cryst. Growth
Des. 2010, 10, 1283−1288.
(37) Li, T.; Sullivan, J. E.; Rosi, N. L. Design and Preparation of a
Core−Shell Metal−Organic Framework for Selective CO2 Capture. J.
Am. Chem. Soc. 2013, 135, 9984−9987.
REFERENCES
■
(1) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to Metal-
Organic Frameworks. Chem. Rev. 2012, 112, 673−674.
(2) Ockwig, N. W.; Delgado-Friedrichs, O.; O’Keeffe, M.; Yaghi, O.
M. Reticular Chemistry: Occurrence and Taxonomy of Nets and
Grammar for the Design of Frameworks. Acc. Chem. Res. 2005, 38,
176−182.
(3) Fang, Z.; Bueken, B.; De Vos, D. E.; Fischer, R. A. Defect-
Engineered Metal−Organic Frameworks. Angew. Chem., Int. Ed. 2015,
54, 7234−7254.
(4) Cheetham, A. K.; Bennett, T. D.; Coudert, F.-X.; Goodwin, A. L.
Defects and disorder in metal organic frameworks. Dalton Trans. 2016,
45, 4113−4126.
(5) Bennett, T. D.; Cheetham, A. K.; Fuchs, A. H.; Coudert, F.-X.
Interplay between defects, disorder and flexibility in metal-organic
frameworks. Nat. Chem. 2017, 9, 11−16.
(6) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and
synthesis of an exceptionally stable and highly porous metal-organic
framework. Nature 1999, 402, 276−279.
(7) Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.;
Williams, I. D. A Chemically Functionalized Nanoporous Material
[Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148−1150.
(8) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.;
Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick
Forming Metal Organic Frameworks with Exceptional Stability. J. Am.
Chem. Soc. 2008, 130, 13850−13851.
(9) Kim, M.; Cohen, S. M. Discovery, development, and
functionalization of Zr(IV)-based metal−organic frameworks. Crys-
tEngComm 2012, 14, 4096−4104.
(10) Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke,
M.; Behrens, P. Modulated Synthesis of Zr-Based Metal−Organic
Frameworks: From Nano to Single Crystals. Chem. - Eur. J. 2011, 17,
6643−6651.
(11) Gutov, O. V.; Hevia, M. G.; Escudero-Adan, E. C.; Shafir, A.
Metal−Organic Framework (MOF) Defects under Control: Insights
into the Missing Linker Sites and Their Implication in the Reactivity of
Zirconium-Based Frameworks. Inorg. Chem. 2015, 54, 8396−8400.
(12) Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi,
C.; Wang, X.; Zhao, D. Modulator Effects on the Water-Based
Synthesis of Zr/Hf Metal−Organic Frameworks: Quantitative
Relationship Studies between Modulator, Synthetic Condition, and
Performance. Cryst. Growth Des. 2016, 16, 2295−2301.
(13) Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.;
Lillerud, K. P. Defect Engineering: Tuning the Porosity and
Composition of the Metal−Organic Framework UiO-66 via
Modulated Synthesis. Chem. Mater. 2016, 28, 3749−3761.
(14) Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.;
Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S. Effect of Benzoic
Acid as a Modulator in the Structure of UiO-66: An Experimental and
Computational Study. J. Phys. Chem. C 2017, 121, 9312−9324.
(15) Cai, G.; Jiang, H.-L. A Modulator-Induced Defect-Formation
Strategy to Hierarchically Porous Metal−Organic Frameworks with
High Stability. Angew. Chem. 2017, 129, 578−582.
(16) Cliffe, M. J.; Wan, W.; Zou, X.; Chater, P. A.; Kleppe, A. K.;
Tucker, M. G.; Wilhelm, H.; Funnell, N. P.; Coudert, F.-X.; Goodwin,
A. L. Correlated defect nanoregions in a metal−organic framework.
Nat. Commun. 2014, 5, 4176.
(17) Trickett, C. A.; Gagnon, K. J.; Lee, S.; Gandara, F.; Burgi, H.-B.;
Yaghi, O. M. Definitive Molecular Level Characterization of Defects in
UiO-66 Crystals. Angew. Chem., Int. Ed. 2015, 54, 11162−11167.
(18) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.;
Yildirim, T.; Zhou, W. Unusual and Highly Tunable Missing-Linker
Defects in Zirconium Metal−Organic Framework UiO-66 and Their
Important Effects on Gas Adsorption. J. Am. Chem. Soc. 2013, 135,
10525−10532.
(19) Hu, Z.; Faucher, S.; Zhuo, Y.; Sun, Y.; Wang, S.; Zhao, D.
Combination of Optimization and Metalated-Ligand Exchange: An
Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2
Separation. Chem. - Eur. J. 2015, 21, 17246−17255.
G
Inorg. Chem. XXXX, XXX, XXX−XXX