Y. Riadi et al. / Tetrahedron Letters 51 (2010) 6715–6717
6717
NOe
NOe
Table 4
Comparison of the condensation reaction of p-chlorobenzaldehyde and cyclohexa-
none in the presence of different catalysts
H
H
O
1
H
H
Entry
Catalyst
Time (min)
Yield (%)
2
1
2
3
4
5
6
7
Na/ABM
TiCl3ꢂSO3CF3
SiO2–OK
I2
TCT
Yb(OTf)3
RuCl3
10
120
180
270
16
94
9616
8828
9421
9027
9514
9417
3
4
H
H
H H
O2N
NO2
NOe
NOe
Figure 3. NOE in EE geometry.
720
720
Table 2
Effect of solvent on the synthesis of 3f catalyzed by Na/ABM
support which can contribute to the development of catalytic pro-
cesses and reduced environmental problems and it is the first use
of this material as the catalyst.
Entry
Solvent
Reaction time (min)
Isolated yield (%)
1
2
3
4
5
THF
10
10
10
10
10
38
22
45
66
98
Toluene
Methanol
Chloroform
Water
References and notes
1. Deli, J.; Lorand, T.; Szabo, D.; Foldesi, A. Pharmazie 1984, 39, 539.
2. Nielsen, A. T.; Houlihan, W. J. Org. React. 1968, 16, 1.
3. Guilford, W. J.; Shaw, K. J.; Dallas, J. L.; Koovakkat, S.; Lee, W.; Liang, A.; Light, D.
R.; McCarrick, M. A.; Whitlow, M.; Ye, B.; Morrissey, M. M. J. Med. Chem. 1999,
42, 5415.
4. Artico, M.; Di Santo, R.; Costi, R.; Novellino, E.; Greco, G.; Massa, S.; Tramintano,
E.; Marongiu, M. E.; De Montis, A.; La Colla, P. J. Med. Chem. 1998, 41, 3948.
5. Jia, Z. C.; Quail, J. W.; Arora, V. K.; Dimmock, J. R. Acta Crystallogr., Sect. C 1989,
45, 1117.
6. Ogawa, M.; Ishii, Y.; Nakano, T.; Irifune, S. JP 63192446, 1988 [Chem. Abstr. 1988,
63, 238034].
7. Gangadhara, K. K. Polymer 1995, 36, 1903.
8. Trost, B. M.; Fleming, I. In Comprehensive Organic Synthesis; Pergamon Press:
Oxford, 1991; Vol. 3, Chapter 1.4–1.7.
9. Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
10. Smith, M. B.; March, J. Advanced Organic Chemistry, Reactions, Mechanisms, and
Structure; John Wiley & Sons: New York, 2001. pp 1218–1224.
11. Hathaway, B. A. J. Chem. Educ. 1987, 64, 367.
12. Wang, J.; Kang, L.; Hu, Y.; Wie, B. Synth. Commun. 2002, 32, 1691.
13. Li, J.; Yang, W.; Chen, G.; Li, T. Synth. Commun. 2003, 33, 2619.
14. Wang, L.; Sheng, J.; Tian, H.; Han, J.; Fan, Z.; Qian, C. Synthesis 2004, 3060.
15. Sabitha, G.; Reddy, K. K.; Reddy, K. B.; Yadav, J. S. Synthesis 2004, 263.
16. Iranpoor, N.; Zeynizadeh, B.; Aghapour, A. J. Chem. Res. 1999, 554.
17. Iranpoor, N.; Kazemi, E. Tetrahedron 1998, 54, 9475.
18. Zhu, Y.; Pan, Y. Chem. Lett. 2004, 33, 668.
19. Hu, X.; Fan, X.; Zhang, X.; Wang, J. J. Chem. Res. 2004, 684.
20. Zheng, X.; Zhang, Y. Synth. Commun. 2003, 33, 161.
21. Das, B.; Thirupathi, P.; Mahender, I.; Reddy, K. R. J. Mol. Catal. A: Chem. 2006,
247, 182.
22. Bhagat, S.; Sharma, R.; Charaborti, A. K. J. Mol. Catal. A: Chem. 2006, 260, 235.
23. Singh, N.; Pandey, J.; Yadav, A.; Chaturvedi, V.; Bhatnagar, S.; Gaikwad, A. N.;
Sinha, S. K.; Kumar, A.; Shukla, P. K.; Tripathi, R. P. Eur. J. Med. Chem. 2009, 44,
1705.
24. Vashchenko, V.; Kutulya, L.; Krivoshey, A. Synthesis 2007, 2125.
25. Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko, S. E.; Shivanyuk, A.
N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073.
26. Abaee, M. S.; Mojtahedi, M. M.; Sharifi, R.; Zahedi, M. M.; Abbasi, H.; Tabar-
Heidar, K. J. Iran. Chem. Soc. 2006, 3, 293.
27. Bigdeli, M. A.; Mahdavinia, G. H.; Jafari, S.; Hazarkhani, H. Catal. Commun. 2007,
8, 1965.
28. Jin, T. S.; Zhao, Y.; Liu, L. B.; Li, T. S. Indian J. Chem. 2007, 45, 2229.
29. Zhang, X.; Fan, X.; Niu, H.; Wang, J. Green Chem. 2003, 5, 267.
30. Zahouily, M.; Abrouki, Y.; Rayadh, A.; Sebti, S.; Dhimane, H.; David, M.
Tetrahedron Lett. 2003, 44, 2463.
Reaction conditions: solvent (2 mL), benzaldehyde (2 mol), cyclopentanone
(1 mmol), and Na/ABM (0.1 g).
easier than using other solvents. For example, with water as the
solvent, the product could be obtained with high purity through
simple filtration and rinsing of the filtrates with a little amount
of dichloromethane.
However, when toluene, THF, chloroform, and methanol were
used as solvents, a homogenous mixture of product and starting
materials was obtained at the end of the reaction; this product
has the same stereoselectivity of the product obtained when we
use water as the solvent. We clearly show that water increases
the catalytic activity of both ABM alone and with Na/ABM, in all
cases.37
After filtration of the product, Na/ABM was recovered quantita-
tively by simple filtration and regenerated by calcination at 400 °C
for several hours for each new reuse. Investigations of benzalde-
hyde and cyclopentanone as model substrates showed that succes-
sive reuse of the recovered catalyst in the same reaction gave the
product in yield almost as high as that of the first round (Table 3).
It should be noted that even in the sixth round, reuse of the cat-
alyst recovered can produce the corresponding product 3f in fairly
good yield.
To obtain further evidence we studied the effects of different
catalysts on the condensation reaction of p-chlorobenzaldehyde
with cyclohexanone. The results of this study are presented in
Table 4.
Comparison of the results obtained by our method with some of
those reported shows the efficiency of this method because of
shorter reaction times, high yields, and application of an inexpen-
sive and readily available catalyst.
In conclusion, the present method is an efficient and selective
procedure for the synthesis of
a,
a0-bis(substituted benzyli-
31. Zahouily, M.; Abrouki, Y.; Rayadh, A. Tetrahedron Lett. 2002, 43, 7729.
32. Abrouki, Y.; Zahouily, M.; Rayadh, A.; Bahlaouan, B.; Sebti, S. Tetrahedron Lett.
2002, 43, 8951.
33. Zahouily, M.; Abrouki, Y.; Bahlaouan, B.; Rayadh, A.; Sebti, S. Catal. Commun.
2003, 4, 521.
34. Riadi, Y.; Mamouni, R.; Abrouki, Y.; El Haddad, M.; Saffaj, N.; El Antri, S.;
Routier, S.; Guillaumet, G.; Lazar, S. Lett. Org. Chem. 2010, 7, 269.
35. Sebti, S.; Solhy, A.; Tahir, R.; Abdelatif, S.; Boulaajaj, S.; Mayoral, J. A.; García, J.
I.; Fraile, J. M.; Kossir, A.; Oumimoun, H. J. Catal. 2003, 213, 1.
dene)cycloalkanones from cyclic ketones with aromatic aldehydes
in refluxing water.
A simple procedure and the use of water as a solvent are ex-
pected to contribute to the development of more benign crossed-
aldol reactions. The ABM is a new, inexpensive, and attractive solid
Table 3
Studies on the reuse of Na/ABM in the synthesis of product 3f
36. General procedure for the synthesis of product 3.
A mixture containing
(1.0 mmol) of cyclohexanone and (2.0 mmol) of benzaldehyde in water and
Na/ABM (0.1 g) was stirred at reflux until completion of the reaction. The
reaction mixture was filtered and the catalyst was washed with CH2Cl2
(2 ꢀ 5 mL). After concentrating of the filtrate under reduced pressure, the
residue was subjected to recrystallization (EtOAc).
Round
Yield
Na/ABM recovered (%)
1
2
3
4
5
6
98
95
94
89
89
84
99
96
96
98
96
96
Spectral data of 3a: IR (KBr): d max cmꢁ1 3071, 1721, 1603; 1H NMR (CDCl3) d
(ppm) 7.33–7.50 (m, 10H), 7.25 (s, 2H), 2.90 (t, 4H, J = 3.5 Hz), 1.74–1.85 (m,
2H); 13C NMR (CDCl3) d (ppm) 28.4, 128.3, 128.5, 130.3, 136.3, 136.9, 190.4.
37. Sebti, S.; Solhy, A.; Tahir, R.; Smahi, A. Appl. Catal. 2002, 235, 273.