C O M M U N I C A T I O N S
Table 1. Gold-Catalyzed Enolate Formation/Aldol Reactions
by aldehydes present in the reaction mixture. Intramolecular enolate
formation/aldol reactions provide access to a range of functionalized
scaffolds in excellent yield, after subsequent transformation of the
boronic acid. We have also demonstrated the feasibility of a
combined gold/boronic acid catalyzed aldol condensation reaction.
Further work is underway to explore the scope of this novel
approach to enolate chemistry.
Acknowledgment. We are grateful to Dr. Abil Aliev (UCL)
for technical assistance with the NMR studies. Financial support
for this work was provided by the EPSRC (Advanced Research
Fellowship to T.D.S. and a PhD studentship to P.S.), and the DAAD
(
scholarship to C.K.).
Supporting Information Available: Detailed experimental proce-
dures and characterization of all new compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) Modern Aldol Reactions; Mahrwald, R., Evans, D. A., Eds; WILEY-VCH,
Weinheim, 2004; Vols. 1-2.
(
2) (a) Mahrwald, R. Chem. ReV. 1999, 99, 1095. (b) Cowden, C. J.; Paterson,
I. In Asymmetric Aldol Reactions Using Boron Enolates; Paquette, L. A.,
Ed.; Organic Reactions Vol. 51; John Wiley and Sons, Inc.: 1997; pp 1-
2
00.
(
3) (a) Gazzard, L. J.; Motherwell, W. B.; Sandham, D. A. J. Chem. Soc.,
Perkin Trans. I 1999, 979. (b) Cuperly, D.; Petrignet, J.; Cr e´ visy, C.; Gr e´ e,
R. Chem.sEur. J. 2006, 12, 3261.
(
4) (a) Hoffmann-R o¨ der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (b)
Zhang, L.; Sun, J.; Kozmin, A. S. AdV. Synth. Catal. 2006, 348, 2271. (c)
Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896.
(d) F u¨ rstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (e)
Jim e´ nez-N u´ n˜ ez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (f)
Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (g) Hashmi, A. S. K.
Chem. ReV. 2007, 107, 3180. (h) Skouta, R.; Li, C.-J. Tetrahedron 2008,
6
4, 4917. (i) Shen, H. C. Tetrahedron 2008, 64, 3885. (j) Shen, H. C.
Tetrahedron 2008, 64, 7847. (k) Li, Z.; Brouwer, C.; He, C. Chem. ReV.
008, 108, 3239.
2
(
(
2
5) For mercury-mediated addition of Ph BOH to ethoxyacetylene, see:
Murakami, M.; Mukaiyama, T. Chem. Lett. 1982, 241.
6) (a) Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu,
R.-S. J. Am. Chem. Soc. 2005, 127, 3406. (b) Brown, H. C.; Cole, T. E.
Organometallics 1983, 2, 1316.
(
7) M e´ zailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
8) (a) Greig, L. M.; Kariuki, B. M.; Habershon, S.; Spencer, N.; Johnston,
R. L.; Harris, K. D. M.; Philp, D. New J. Chem. 2002, 26, 701. (b) Arcus,
V. L.; Main, L.; Nicholson, B. K. J. Organomet. Chem. 1993, 460, 139.
(
(
c) Letsinger, R. L.; Nazy, J. R. J. Am. Chem. Soc. 1959, 81, 3013. (d)
Chen, J.; Bajko, Z.; Kampf, J. W.; Ashe, A. J., III. Organometallics 2007,
6, 1563.
2
(
9) (a) Marchal, E.; Uriac, P.; Legouin, B.; Toupet, L.; van de Weghe, P.
Tetrahedron 2007, 63, 9979. (b) Aikawa, H.; Tago, S.; Umetsu, K.;
Haginiwa, N.; Asao, N. Tetrahedron 2009, 65, 1774.
(
10) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96,
7
503.
b
c
(11) See Supporting Information for details.
a Major isomer. Yield over 2/3 steps from boronic acid 1. Ar )
-MeC
(
12) For recent catalytic reactions of acetaldehyde, see: (a) Hayashi, Y.; Itoh,
T.; Ohkubo, M.; Ishikawa, H. Angew. Chem., Int. Ed. 2008, 47, 4722. (b)
Yang, J. W.; Chandler, C.; Stadler, M.; Kampen, D.; List, B. Nature 2008,
452, 453.
4
6 4
H .
(
13) For a recent approach to dihydrobenzofurans, see: Coy B., E. D.; Jovanovic,
L.; Sefkow, M. Org. Lett. 2010, DOI: 10.1021/ol100433z.
14) Falck, J. R.; Bondlela, M.; Venkataraman, S. K.; Srinivas, D. J. Org. Chem.
(
2
001, 66, 7148.
(
(
15) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
16) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West,
T. R. Tetrahedron Lett. 1998, 39, 2937. (c) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tetrahedron Lett. 1998, 39, 2941. (d) King, A. E.; Brunold, T. C.; Stahl,
S. S. J. Am. Chem. Soc. 2009, 131, 5044.
17) Decicco, C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001, 3, 1029.
(18) (a) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381. (b) Shade, R. E.;
Hyde, A. M.; Olsen, J.-C.; Merlic, C. A. J. Am. Chem. Soc. 2010, 132,
gold-catalyzed alkyne-carbonyl metathesis, analogous to reported
(
2
1
Ag-catalyzed reactions. However, in the absence of the arylbo-
ronic acid 10 no reaction occurred with the gold catalyst over a
similar time period, providing evidence to support the intermediacy
of a boron enolate.
1
202.
(19) (a) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412. (b) Lin,
G.-Y.; Yang, C.-Y.; Liu, R.-S. J. Org. Chem. 2007, 72, 6753.
(
20) Satoh, T.; Itaya, T.; Okuro, K.; Miura, M.; Nomura, M. J. Org. Chem.
1995, 60, 7267.
In summary, we have developed an efficient catalytic method
for generating boron enolates from unactivated alkynes. The enolate
formation is exceptionally mild, and the enolates can be trapped
(
21) Rhee, J. U.; Krische, M. J. Org. Lett. 2005, 7, 2493.
JA102129C
J. AM. CHEM. SOC. 9 VOL. 132, NO. 17, 2010 5969