Nanocrystalline Titanium(IV) Oxide
COMMUNICATIONS
the crude product. The crude product was purified by column
chromatography on silica gel (100–200 mesh) to give pure 1-
cyano-1-trimethylsilyloxy-3-(2-methyl-3-indolyl)-cyclopen-
tane; yield: 65%; Diastereomeric mixture, d.r.¼65:35. 1H
NMR (200 MHz, CDCl3) (major diastereoisomer): d¼0.34
(s, 9H), 2.06–2.61 (m, 6H), 2.39 (s, 3H), 3.49–3.59 (m, 1H),
7.08–7.14 (m, 2H), 7.27–7.29 (m, 1H), 7.58 (br, 1H), 7.70 (d,
J¼7.0 Hz, 1H); (minor diastereoisomer): d¼0.33 (s, 9H),
3.61–3.78 (m, 1H).
Acknowledgements
We wish to thank the CSIR forfinancial support underthe Task
Force Project COR-0003 and Soumi Laha and Jagjit Yadav
thank CSIR, India fortheirfellowships. Nanocrystalline TiO
,
2
ZnO, CuO samples were purchased from NanoScale Materials
Inc., Manhattan, KS 66502, USA. Commercial TiO2 sample was
purchased from LOBA Chemie, India.
References and Notes
Figure 2. The ammonia TPD patterns of (a) commercial
[1] For catalytic tandem process, see: a) A. K. Ghosh, R. Ka-
wahama, Tetrahedron Lett. 1999, 40, 1083; b) N. Jeong,
S. D. Seo, J. Y. Shin, J. Am. Chem. Soc. 2000, 122,
10220; c) S. Yamasaki, M. Kanai, M. Shibasaki, J. Am.
Chem. Soc. 2001, 123, 1256; d) C. W. Bielawski, J. Louie,
R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 12872; e) J.
Louie, C. W. Bielawski, R. H. Grubbs, J. Am. Chem.
Soc. 2001, 123, 11312; f) N. Giuseppone, J. Collin, Tetra-
hedron 2001, 57, 8989; g) M. Shindo, K. Matsumoto, Y.
Sato, K. Shishido, Org. Lett. 2001, 3, 2029; h) A. D. Mar-
tinez, J. P. Deville, J. L. Stevens, V. Behar, J. Org. Chem.
2004, 69, 991.
[2] P. Anastas, J. C. Warner, in:Green Chemistry, Theory and
Practice, Oxford University Press, Oxford, UK, 1998.
[3] a) K. J. Klabunde, R. Mulukutla, Nanoscale Materials in
Chemistry, Wiley-Interscience, New York, 2001, Chapter
7, p. 223; b) A. T. Bell, Science 2003, 299, 1688; c) R.
Schlogl, S. B. Adb Hamid, Angew. Chem. Int. Ed. 2004,
43, 1628; d) S. Utamapanya, K. J. Klabunde, J. R. Schlup,
Chem. Mater. 1991, 3, 1; e) R. M. Narske, K. J. Klabunde,
S. Fultz, Langmuir 2002, 18, 4819; f) K. J. Klabunde, J.
Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y.
Jiang, I. Lagadic, D. Zhang, J. Phys. Chem. 1996, 100,
12142.
TiO2, (b) nano CuO, (c) nano ZnO and (d) nano TiO2.
Experimental Section
Typical Experimental Procedure for the Synthesis of
3-Alkylated Indoles
Nanocrystalline TiO2 (10 mol %) was added to a mixture of in-
dole (0.175 g, 1.5 mmol) and chalcone (0.208 g, 1 mmol) in an-
hydrous dichloromethane (3 mL) and stirred at room temper-
ature for 6 h. After completionof the reaction (as monitored by
TLC), the catalyst was centrifuged and washed with ether. The
reaction was quenched by using a saturated solution of
NaHCO3 (3 mL) and the mixture extracted with ether. The
combined organic layers were separated and dried over
Na2SO4. The resultant organic layer was concentrated to give
the crude 3-(3-indolyl)-1,3-diphenylpropan-2 one. Column
chromatography was performed using silica gel (100–200
mesh) to afford pure 3-(3-indolyl)-1,3-diphenylpropan-2 one;
yield: 75%. 1H NMR (200 MHz, CDCl3): d¼3.78 (t, J¼
6.6 Hz, 2H), 5.07 (t, J¼7.2 Hz, 1H), 6.96–7.58 (m, 13H),
7.91–7.96 (m, 3H).
[4] a) B. M. Choudary, Ravichandra S. Mulukutla, K. J. Kla-
bunde, J. Am. Chem. Soc. 2003, 125, 2020; b) B. M. Chou-
dary, M. L. Kantam, K. V. S. Ranganath, K. Mahendar,
B. Sreedhar, J. Am. Chem. Soc. 2004, 126, 3396;
c) B. M. Choudary, K. V. S. Ranganath, J. Yadav, M. L.
Kantam, Tetrahedron Lett. 2005, 46, 1369; d) M. L. Kant-
am, K. B. Shiva Kumar, Ch. Sridhar, Adv. Synth. Catal.
2005, 347, 1212; e) B. M. Choudary, K. V. S. Ranganath,
U. Pal, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc.
2005, 127, 13167.
Typical Experimental Procedure for the Catalytic
One-Pot Addition of Indole or 2-Methylindole and
TMSCN to a,b-Unsaturated Ketones by NanoTiO2
Nano TiO2 (10 mol %) was added to 2-cyclopenten-1-one
(0.082 g, 1 mmol) and 2-methylindole (0.198 g, 1.5 mmol) in
anhydrous dichloromethane (3 mL) and stirred at room tem-
perature until the disappearance of the starting cyclopente-
none (checked by TLC). TMSCN (0.893 g, 9 mmol) was added
by a syringe and the mixture was stirred at room temperature
for 6 h. Finally the reaction was quenched with a saturated sol-
ution of NaHCO3 and extracted with ether. The organic phases
were combined, dried over Na2SO4, and concentrated to afford
[5] E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A.
Ponce, W. Li, C. Carnes, K. J. Klabunde, Chem. Eur. J.
2001, 7, 2505.
Adv. Synth. Catal. 2006, 348, 867 – 872
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
871