Tryptophan monitoring of HIV-1 protease dynamics, inhibitor binding
2245
Engh RA, Chen LXQ, Fleming GR. 1986. Conformational dynamics of tryp-
tophan: A proposal for the origin of the non-exponential fluorescence decay.
Chem Phys Lett 126:365–372.
Fitzgerald PMD, McKeever BM, VanMiddlesworth JF, Springer JP, Heimbach
JC, Leu ChT, Herber WK, Dixon RAF, Darke PL. 1990. Crystallographic
analysis of a complex between human immunodeficiency virus type 1 pro-
tease and acetyl-pepstatin at 2.0 Å resolution. J Biol Chem 265:14209–14219.
Flexner C. 1998. HIV-protease inhibitors. New Eng J Med 338:1281–92.
Fraczkiewicz R, Braun W. 1998. A new efficient algorithm for calculating
solvent accessible surface areas of macromolecules. J Comp Chem 19:319–
Ross JBA, Wyssbrod HR, Porter RA, Schwartz GP, Michaels CA, Laws WR.
1992. Correlation of tryptophan fluorescence intensity decay parameters
with 1H NMR-determined rotamer conformations: @Tryptophan #Oxytoxin.
Biochemistry 31:1585–1594.
Rullman JAC. 1996. AQUA, Computer program. Department of NMR Spec-
troscopy, Bijvoet Center for Biomolecular Research, Utrecht University,
The Netherlands.
Schmidt KE, Lee MA. 1991. Implementing the fast multipole method in three
dimensions. J Stat Phys 63:1223–1237.
Seelmeier S, Schmidt H, Turk V, von der Helm K. 1988. Human immunodefi-
ciency virus has an aspartic-type protease that can be inhibited by pepstatin
A. Proc Natl Acad Sci USA 85:6612–6616.
Sillen A, Diaz JF, Engelborghs Y. 2000. A step toward the prediction of the
fluorescence lifetimes of tryptophan residues in proteins based on structural
and spectral data. Protein Sci 9:158–169.
Silva ND, Prendergast FG. 1996. Tryptophan dynamics of the FK506 binding
protein: Time-resolved fluorescence and simulations. Biophys J 70:1122–
1137.
Szabo AG, Rayner DM. 1980. Fluorescence decay of tryptophan conformers in
aqueous solution. J Am Chem Soc 102:554–563.
Szeltner Z, Polgár L. 1996. Conformational stability and catalytic activity of
HIV-1 protease are both enhanced at high salt concentration. J Biol Chem
271:5458–5463.
2
3
33.
Hennecke J, Sillen A, Huber-Wunderlich M, Engelborghs Y, Glockshuber R.
997. Quenching of tryptophan fluorescence by the active-site disulfide
1
bridge in the DsbA protein from E. coli. Biochemistry 36:6391–6400.
Hutnik CM, Szabo AG. 1989. Confirmation that multiexponential fluorescence
decay behavior of holoazurin originates from conformational heterogeneity.
Biochemistry 28:3923–3934.
Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RAF, Scolnick
EM, Sigal IS. 1988. Active human immunodeficiency virus protease is
required for viral infectivity. Proc Natl Acad Sci USA 85:4686–4690.
Kungl AJ, Visser NV, van Hoek A, Visser AJWG, Billich A, Schilk A, Gstach
H, Auer M. 1998. Time-resolved fluorescence anisotropy of HIV-1 protease
inhibitor complexes correlates with inhibitory activity. Biochemistry 37:
2
778–2786.
Laberge M, Vreugdenhill AJ, Vanderkooi J, Butler IS. 1998. Microperoxidase-
1: Molecular dynamics and q-band excited resonance raman of the oxi-
Tran CD, Beddard GS. 1985. Studies of the fluorescence from tryptophan in
melittin. Eur Biophys J 13:59–64.
Trylska J, Antosiewicz J, Geller M, Hodge CN, Klabe RM, Head MS, Gilson
MK. 1999. Thermodynamic linkage between the binding of protons and
inhibitors to HIV-1 protease. Protein Sci 8:180–195.
Tyagi SC, Simon SR, Carter CA. 1994. Effect of pH and non physiological salt
concentrations on human immunodeficiency virus HIV-1 protease dimer-
ization. Biochem Cell Biol 72:175–181.
Valeur B, Weber G. 1977. Resolution of the fluorescence excitation spectrum of
indole into the 1La and 1Lb excitation bands. Photochem Photobiol 25:
441–444.
Vergani B, Kintrup M, Hillen W, Lami H, Piemont E, Bombarda E, Alberti P,
Doglia SM, Chabbert M. 2000. Backbone dynamics of Tet repressor a80a9
loop. Biochemistry 39:2759–2768.
Vos R, Engelborghs Y. 1994. A fluorescence study of tryptophan-histidine in-
teraction in the peptide anantin and in solution. Photochem Photobiol
60:24–32.
Wang YX, Freedberg DI, Grzesiek S, Torchia DA, Wingfield PT, Kaufman JD,
Stahl SJ, Chang ChH, Hodge NC. 1996a. Mapping hydration water mol-
ecules in the HIV-1 protease0DMP323 complex in solution by NMR-
spectroscopy. Biochemistry 35:12694–12704.
1
dized, reduced and carbonyl forms. J Biomol Struct Funct 15:1039–1050.
Lakowicz JR. 1983. Principles of fluorescence spectroscopy. New York: Ple-
num. p 264.
Lapatto R, Blundell T, Hemmings A, Overington J, Wilderspin A, Wood S,
Merson JR, Whittle PJ, Danley DE, Geohegan KF, et al. 1989. X-ray analy-
sis of HIV-1 proteinase at 2.7-Å resolution confirms homology among ret-
roviral enzymes. Nature 342:299–302.
Laskowski RA, MacArthur MW, Moss DS, Thornthon JM. 1993. PROCHECK:
A program to check the stereochemical quality of protein structures. J Appl
Crystallogr 26:283–291.
Lee B, Richards FM. 1971. The interpretation of protein structures: Estimation
of static accessibility. J Mol Biol 55:379–400.
Lehrer SS. 1971. Solute perturbation of protein fluorescence. The quenching of
the tryptophyl fluorescence of model compounds and of lysozyme by iodide
ion. Biochemistry 10:3254–3263.
Louis JM, Dyda F, Nashed NT, Kimmel AR, Davies DR. 1998. Hydrophilic
peptides derived from the transframe region of gag-pol inhibit the HIV-1
protease. Biochemistry 37:2105–2113.
Mehler EL, Solmajer T. 1991. Electrostatic effects in proteins: comparison of
dielectric and charge models. Protein Eng 4:903–910.
Mildner AM, Rothrock DJ, Leone JW, Bannow CA, Lull JM, Reardon IM,
Sarcich JL, Howe WJ, Tomich C-SC, Smith CW, et al. 1994. The HIV-1
protease as enzyme and substrate: Mutagenesis of autolysis sites and gen-
eration of a stable mutant with retained kinetic properties. Biochemistry
Wang YX, Freedberg DI, Yamazaki,T, Wingfield PT, Stahl SJ, Kaufman JD,
Kiso Y, Torchia DA. 1996b. Solution NMR evidence that the HIV-1 protease
catalytic aspartyl groups have different ionization states in the complex
formed with the asymmetric drug KNI-272. Biochemistry 35:9945–
9950.
Willis KJ, Neugebauer W, Sikorska M, Szabo AG. 1994. Probing a-helical
secondary structure at a specific site in model peptides via restriction of
tryptophan side-chain rotamer conformation. Biophys J 66:1623–1630.
Wlodawer A, Erickson JW. 1993. Structure-based inhibitors of HIV-1 protease.
Annu Rev Biochem 62:543–585.
3
3:9405–9413.
Navia MA, Fitzgerald PMD, McKeever BM, Leu ChT, Heimbach JC, Herber
WK, Sigal IS, Darke PL, Springer JP. 1989. Three-dimensional structure of
aspartyl-protease from human immunodeficiency virus HIV-1. Nature
3
37:615–620.
Wlodawer A, Miller M, Jaskolski M, Sathyanarayana KB, Baldwin E, Weber TI,
Selk ML, Clawson L, Schneider J, Kent HBS. 1989. Conserved folding in
retroviral proteases: Crystal structure of a synthetic HIV-1 protease. Science
245:616–621.
Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman
JD, Wingfield PT, Lam PYS, Jadhav PK, et al. 1995. Flexibility and func-
tion in HIV-1 protease. Struct Biol 2:274–280.
Pargellis ChA, Morelock MM, Graham ET, Kinkade P, Pav S, Lubbe K, Lama-
rre D, Anderson PC. 1994. Determination of kinetic rate constants for the
binding of inhibitors to HIV-1 protease and for the association and disso-
ciation of active homodimer. Biochemistry 33:12527–12534.
Polgár L, Szeltner Z, Boros I. 1994. Substrate-dependent mechanisms in the
catalysis of human immunodeficiency virus protease. Biochemistry 33:9351–
Wlodawer A, Vondrasek J. 1998. Inhibitors of HIV-1 protease: A major success
of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27:249–
284.
Yamazaki T, Nicholson LK, Torchia DA, Stahl SJ, Kaufman JD, Wingfield PT,
Domaille PJ, Campbell-Burk S. 1994. Secondary structure and signal as-
signments of human-immunodeficiency-virus-1 protease complexed to a
novel, structure-based inhibitor. Eur J Biochem 219:707–712.
Yengo CM, Chrin L, Rovner AS, Berger CL. 1999. Intrinsic tryptophan
fluorescence identifies specific conformational changes at the actomyosin
interface upon action binding and ADP release. Biochemistry 38:14515–
14523.
9
357.
Ringhofer S, Kallen J, Dutzler R, Billich A, Visser AJWG, Scholz D, Stein-
hauser O, Schreiber H, Auer M, Kungl AJ. 1999. X-ray structure and con-
formational dynamics of the HIV-I protease in complex with the inhibitor
SDZ283-910: Agreement of time-resolved spectroscopy and molecular dy-
namics simulations. J Mol Biol 286:1147–1159.
York DM, Darden TA, Pedersen LG, Anderson MW. 1993. Molecular-dynamic
simulation of HIV-1 protease in a crystalline environment and in solution.
Biochemistry 32:1443–1453.
Rosé JK, Salto R, Craik CS. 1993. Regulation of autoproteolysis of the HIV-1
and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem
2
68:11939–11945.