2
74
A. Keraani et al. / Catalysis Today 156 (2010) 268–275
Table 2
sequence, consisting in the dissolution of the catalyst in the ionic
liquid before the impregnation step, will also be envisaged.
RCM of DATA in the membrane reactor.
Cycle
Conversion (%)
Time (h)
1
2
3
99
98
52
1
1
1
2.5
Acknowledgement
The authors acknowledge the French Ministry of Research for a
Ph.D. grant given to A.K.
98
References
physico-chemical interactions in the membrane/solute/solvent
system.
[
[
1] Y. Chauvin, Angew. Chem. Int. Ed. 45 (2006) 3740.
2] R.R. Schrock, Angew. Chem. Int. Ed. 45 (2006) 3748.
3
.2. Metathesis reaction in catalytic membrane reactor
[3] R.H. Grubbs, Angew. Chem. Int. Ed. 45 (2006) 3760.
[
[
4] R.H. Grubbs (Ed.), Handbook of Metathesis, vol. 1–3, Wiley-VCH, Weinheim,
003.
5] S.J. Connon, S. Blechert, in: P.H. Dixneuf, C. Bruneau (Eds.), Ruthenium Catalysts
and Fine Chemistry, vol. 11, Springer, 2004, p. 93.
2
The ionically tagged Hoveyda catalyst immobilized in
2
[
bmim][PF ] dispersed on the Starmem membrane (catalytic mem-
6
◦
[6] A. Fürstner, Angew. Chem. Int. Ed. Engl. 39 (2000) 3012.
brane) was used in the catalytic reactor at 35 C for the RCM of DATA
[
[
7] A.H. Hoveyda, A.R. Zhugralin, Nature 450 (2007) 243.
8] P.H. Deshmuhk, S. Blechert, Dalton Trans. (2007) 2479.
(
Scheme 1). As depicted in Table 2, the first run proceeded quanti-
tatively in 1 h (not optimised reaction time). The reactor was then
drained and reloaded with the same amount of DATA resulting in
a similar result i.e. nearly quantitative conversion in 1 h. The pro-
cedure was repeated (cylcle 3) but the catalytic activity decreased
and 2.5 h was necessary to ensure a high conversion (Table 2).
The decrease in activity of the catalytic membrane (Table 2)
may have different origins ranging from the intrinsic stability of
the catalyst to that of the catalytic membrane itself over time.
Further experiments are then needed to determine the lifetime
of complex 2 under RCM conditions, conditioning of course the fea-
sibility of long term recycling. One must notice that such kinetic
studies are often lacking whatever the metathesis catalyst used.
On the other hand, the membrane stability must also be stud-
ied more extensively. Among possible problems are the transfer
of the catalyst in the permeate leading to a loss not linked to nat-
ural deactivation. This leaching could also be due to the transfer
mechanism itself as a too high affinity of the catalyst toward the
membrane surface can sometimes lead to an enhanced transfer
across the membrane in OSNF conditions not only based on size
exclusion but also on physico-chemical interactions. The other bot-
tleneck concerns the stability of the IL coating itself thanks to IL
weak interactions maintaining it on the PI membrane. Then as IL is
very slightly soluble in toluene it could progressively be dissolved
in the solvent and consequently few leaching can occur in permeate
when TMP is applied during OSNF.
[9] J.P.A. Harrity, D.S. La, D.R. Cefalo, M.S. Visser, A.H. Hoveyda, J. Am. Chem. Soc.
20 (1998) 2343.
10] J.S. Kingsbury, J.P.A. Harrity, P.J. Bonitatebus, A.H. Hoveyda, J. Am. Chem. Soc.
21 (1999) 791.
[11] S.B. Garber, J.S. Kingsbury, B.L. Gray, A.H. Hoveyda, J. Am. Chem. Soc. 122 (2000)
168.
12] N. Audic, H. Clavier, M. Mauduit, J.C. Guillemin, J. Am. Chem. Soc. 125 (2003)
248.
1
[
1
8
[
9
[13] H. Clavier, N. Audic, M. Mauduit, J.C. Guillemin, Chem. Commun. (2004) 2282.
[14] C. Thurier, C. Fischmeister, C. Bruneau, H. Olivier-Bourbigou, P.H. Dixneuf,
ChemSusChem 1 (2008) 118.
[
15] C. Thurier, C. Fischmeister, C. Bruneau, H. Olivier-Bourbigou, P.H. Dixneuf, J.
Mol. Catal. A: Chem. 268 (2007) 127.
[16] Q. Yao, Y. Zhang, Angew. Chem. Int. Ed. 42 (2003) 3395.
[
17] C. Fischmeister, Catalytic alkene metathesis in ionic liquids, in: Y. Imamoglu,
V. Dragutan, S. Karabulut (Eds.), Metathesis Chemistry, From Nanostructure
Design to Synthesis of Advanced Materials, Springer, Berlin, 2007, p. 483.
[18] P. Sledz, M. Mauduit, K. Grela, Chem. Soc. Rev. 37 (2008) 2433.
[
19] H.T. Wong, S. Han, A.G. Livingston, Chem. Eng. Sci. 61 (2006) 1338.
[
20] C.P. Mehnert, R.A. Cook, N.C. Dispenziere, M. Afeworki, J. Am. Chem. Soc. 124
(
2002) 12932.
[21] C.P. Mehnert, Chem. Eur. J. 11 (2005) 50.
[
[
[
[
22] A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Eur. J. Inorg. Chem.
2006) 695.
23] A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Top. Catal. 40 (2006)
91.
24] A. Riisager, R. Fehrmann, S. Flicker, R. Van Hal, M. Haumann, P. Wasserscheid,
Angew. Chem. Int. Ed. 44 (2005) 815.
25] M.H. Valkenberg, C. De Castro, W.F. Holderich, Green Chem. 4 (2002) 88.
(
[26] M.J. Jin, A. Taher, H.J. Kang, M. Choi, R. Ryoo, Green Chem. 11 (2009) 309.
[27] H. Hagiwara, K.H. Ko, T. Hoshi, T. Suzuki, Chem. Commun. (2007) 2838.
[
346.
29] H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, T. Suzuki, Org. Lett. 6 (2004) 2325.
1
At first sight, few strategies could be followed in the future to
avoid such problems, if they are confirmed. On one hand graft-
ing of IL on the PI membrane may prevent from IL leaching. On
the other hand, a whole entrapping of both IL and catalyst in the
polymer structure, achieved during the membrane fabrication pro-
cedure might retain both in the membrane matrix. Nevertheless,
this last proposal would be probably limited thanks to the need in
accessibility of substrate to the catalyst during the metathesis and
probably applications would be restrained to small size substrates.
[
[30] A. Wolfson, I.F. Vankelekom, P.A. Jacobs, Tetrahedron Lett. 44 (2003) 1195.
[
[
31] H. Hagiwara, H. Sasaki, T. Hoshi, T. Suzuki, Synlett 4 (2009) 643.
32] L. Rodriguez-Pérez, E. Teuma, A. Falqui, M. Gómez, P. Serp, Chem. Commun.
(
2008) 4201.
1
[
34] A.I. Schafer, A.G. Fane, T.D. Waite (Eds.), Nanofiltration-Principles and Applica-
tions, Elsevier, Amsterdam, The Netherlands, 2003.
[35] X. Li, P. Vandezande, I.F.J. Vankelecom, J. Membr. Sci. 320 (2008) 143.
[
[
36] P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Chem. Soc. Rev. 37 (2008) 365.
37] K. De Smet, S. Aerts, E. Ceulemans, I.F.J. Vankelecom, P.A. Jacobs, Chem. Com-
mun. (2001) 597.
[
[
38] J.T. Scarpello, D. Nair, L.M. Freitas dos Santos, L.S. White, A.G. Livingston, J.
Membr. Sci. 71 (2002) 203.
39] C. Müller, M.G. Nijkamp, D. Vogt, Eur. J. Inorg. Chem. (2005) 4011.
4
. Conclusions
This study reports the immobilisation of an ionically tagged
[40] J.T. Scarpello, D. Nair, L.M. Freitas dos Santos, L.S. White, A.G. Livingston, J.
Membr. Sci. 71 (2003) 203.
[
[
metathesis catalyst on an ionic liquid supported polyimide mem-
brane to prepare a catalytic membrane, the stability of which
must be carefully studied in the future according to several
proposal exposed above. Nevertheless, these preliminary experi-
ments proved, for the first time, the feasibility of the concept for
metathesis catalyst as the efficiency of the catalytic membrane was
demonstrated in a NF membrane reactor for a model metathesis
reaction in toluene at quite gentle temperature (35 C) in a dis-
continuous mode. Supplementary studies are ongoing to quantify
the exact amount of catalyst immobilised. Another immobilisation
41] H.P. Dijkstra, G.P.M. van Klink, G. van Koten, Acc. Chem. Res. 35 (2002) 798.
42] H.-T. Wong, Y.H. See-Toh, F. Castelo Ferreira, R. Crook, A.G. Livingston, Chem.
Commun. (2006) 2063.
[43] J.J.M. de Pater, B.-J. Deelman, C.J. Elsevier, G. van Koten, Adv. Synth. Catal. 348
2006) 1447.
[
(
44] S.A. Chavan, W. Maes, L.E.M. Gevers, J. Wahlen, I.F.J. Vankelekom, P.A. Jacobs,
N. Dehaen, D.E. de Vos, Chem. Eur. J. 11 (2005) 6754.
[45] S. Aerts, H. Weyten, A. Buekenhoudt, L.E.M. Gevers, I.F.J. Vankelecom, P.A.
Jacobs, Chem. Commun. (2004) 710.
[
◦
46] D. Nair, J.T. Scarpello, L.S. White, L.M. Freitas dos Santos, I.F.J. Vankelecom, A.G.
Livingston, Tetrahedron Lett. 42 (2001) 8219.
[47] A. Datta, K. Ebert, H. Plenio, Organometallics 22 (2003) 4685–4691.