Communication
ChemComm
14 Y. Wang, X. Huang, L. H. Zhang and X. S. Ye, Org. Lett., 2004, 6,
4415–4417.
of the desired Gala3nLc4bSph (2). The enzymatic introduction of
the terminal a1-3-linked galactoside by the Ba1-3GalT was
especially advantageous as the 1,2-cis-glycosylation is more
challenging to achieve via chemical glycosylation strategies.
The product (88% yield) was purified by C18-cartridge with
elution using 32% acetonitrile in 0.1% TFA in H2O and the
unreacted acceptor was eluted with 35% or a higher concen-
tration (50%) of acetonitrile in 0.1% TFA/H2O.
It is worth mentioning that 1.5 equivalents of nucleoside
triphosphates (ATP and UTP) were used in each OPME reaction
to optimize the glycosylation yields. With decreased costs of
these compounds in situ recycling of ATP and UTP was not
necessary for preparative or gram-scale reactions.
15 C. Gege, W. Kinzy and R. R. Schmidt, Carbohydr. Res., 2000, 328, 459–466.
16 R. Bommer and R. R. Schmidt, Liebigs Ann. Chem., 1989, 1989, 1107–1111.
17 W. Chen, C. Xia, J. Wang, P. Thapa, Y. Li, A. Talukdar, J. Nadas,
W. Zhang, D. Zhou and P. G. Wang, J. Org. Chem., 2007, 72, 9914–9923.
18 O. M. Schutte, A. Ries, A. Orth, L. J. Patalag, W. Romer, C. Steinem
and D. B. Werz, Chem. Sci., 2014, 5, 3104–3114.
19 S. Nakashima, H. Ando, R. Saito, H. Tamai, H. Ishida and M. Kiso,
Chem. – Asian J., 2012, 7, 1041–1051.
20 K. Fujikawa, S. Nakashima, M. Konishi, T. Fuse, N. Komura, T. Ando,
H. Ando, N. Yuki, H. Ishida and M. Kiso, Chem. – Eur. J., 2011, 17,
5641–5651.
21 Q. Yao, J. Song, C. Xia, W. Zhang and P. G. Wang, Org. Lett., 2006, 8,
911–914.
22 J. R. Rich, A. M. Cunningham, M. Gilbert and S. G. Withers, Chem.
Commun., 2011, 47, 10806–10808.
23 J. Hwang, H. Yu, H. Malekan, G. Sugiarto, Y. Li, J. Qu, V. Nguyen,
D. Wu and X. Chen, Chem. Commun., 2014, 50, 3159–3162.
24 T. Eto, Y. Ichikawa, K. Nishimura, S. Ando and T. Yamakawa,
J. Biochem., 1968, 64, 205–213.
25 B. E. Samuelsson, L. Rydberg, M. E. Breimer, A. Backer, M. Gustavsson,
J. Holgersson, E. Karlsson, A. C. Uyterwaal, T. Cairns and K. Welsh,
Immunol. Rev., 1994, 141, 151–168.
26 E. C. Hallberg, V. Strokan, T. D. Cairns, M. E. Breimer and B. E.
Samuelsson, Xenotransplantation, 1998, 5, 246–256.
27 J. P. Fryer, J. R. Leventhal and A. J. Matas, Transplant Immunol., 1995,
3, 21–31.
The target Gala3nLc4bCer (1) was readily obtained in 85%
yield via the N-acylation of Gala3nLc4bSph (2) with palmitic
acid in the presence of EDCꢀHCl, HOBt and Et3N.18 Overall, the
chemoenzymatic route provided the target Gala3nLc4bCer (1)
with an overall 30% yield in 13 steps. Although Gala3nLc4bCer
(1) had low solubility in methanol as noticed previously,15 its
solubility in CD3OD was sufficient to allow detailed nuclear
magnetic resonance characterization of the product.
28 M. S. Sandrin and I. F. McKenzie, Curr. Opin. Immunol., 1999, 11, 527–531.
29 B. A. Macher and U. Galili, Biochim. Biophys. Acta, 2008, 1780, 75–88.
30 R. Di Benedetto, L. Zanetti, M. Varese, M. Rajabi, R. Di Brisco and
L. Panza, Org. Lett., 2014, 16, 952–955.
31 A. N. Rai and A. Basu, J. Org. Chem., 2005, 70, 8228–8230.
32 Y. Zhang, T. Toyokuni, F. Ruan and S.-I. Hakomori, Glycoconjugate
J., 2001, 18, 557–563.
In conclusion, using a-Gal pentasaccharyl ceramide synthesis
as an example, we have demonstrated that efficient sequential
one-pot multienzyme (OPME) chemoenzymatic systems can be
combined with facile C18-purification processes for high-yield
production of glycosphingosines and glycosylceramides. The
strategy can be extended to the synthesis of other complex
glycosphingolipids. The method and the established protocols
will allow non-specialists to synthesize, purify, and study desired
glycosphingolipids of interest in their own labs with a general
research lab setting.
This work was supported by NIH grant U01GM120419 and
NSF grant CHE-1300449. Bruker Avance-800 NMR spectrometer
was funded by NSF grant DBIO-722538. Y. L., H. Y., and X. C.
are co-founders of Glycohub, Inc., a company focused on the
development of carbohydrate-based reagents, diagnostics, and
therapeutics. Glycohub, Inc. played no role in the design,
execution, interpretation, or publication of this study.
33 S. Kim, S. Lee, T. Lee, H. Ko and D. Kim, J. Org. Chem., 2006, 71, 8661–8664.
34 Y. Liu, N. Ding, H. Xiao and Y. Li, J. Carbohydr. Chem., 2006, 25, 471–489.
¨
35 P. Zimmermann, R. Sommer, T. Bar and R. R. Schmidt, J. Carbohydr.
Chem., 1988, 7, 435–452.
36 D. E. Long, P. Karmakar, K. A. Wall and S. J. Sucheck, Bioorg. Med.
Chem., 2014, 22, 5279–5289.
37 P. T. Nyffeler, C. H. Liang, K. M. Koeller and C. H. Wong, J. Am.
Chem. Soc., 2002, 124, 10773–10778.
38 P. G. Reddy, T. V. Pratap, G. D. K. Kumar, S. K. Mohanty and
S. Baskaran, Eur. J. Org. Chem., 2002, 3740–3743.
39 H. Bayley, D. N. Standring and J. R. Knowles, Tetrahedron Lett., 1978,
19, 3633–3634.
40 H. Yu, J. Cheng, L. Ding, Z. Khedri, Y. Chen, S. Chin, K. Lau,
V. K. Tiwari and X. Chen, J. Am. Chem. Soc., 2009, 131, 18467–18477.
41 S. Huang, H. Yu and X. Chen, Sci. China: Chem., 2011, 54, 117–128.
42 Y. Chen, Y. Li, H. Yu, G. Sugiarto, V. Thon, J. Hwang, L. Ding, L. Hie
and X. Chen, Angew. Chem., Int. Ed., 2013, 52, 11852–11856.
43 H. Yu, K. Lau, V. Thon, C. A. Autran, E. Jantscher-Krenn, M. Xue,
Y. Li, G. Sugiarto, J. Qu, S. Mu, L. Ding, L. Bode and X. Chen, Angew.
Chem., Int. Ed., 2014, 53, 6687–6691.
44 X. Meng, W. Yao, J. Cheng, X. Zhang, L. Jin, H. Yu, X. Chen, F. Wang
and H. Cao, J. Am. Chem. Soc., 2014, 136, 5205–5208.
45 A. Santra, H. Yu, N. Tasnima, M. M. Muthana, Y. Li, J. Zeng, N. J.
Kenyon, A. Y. Louie and X. Chen, Chem. Sci., 2016, 7, 2827–2831.
46 Y. Li, H. Yu, Y. Chen, K. Lau, L. Cai, H. Cao, V. K. Tiwari, J. Qu,
V. Thon, P. G. Wang and X. Chen, Molecules, 2011, 16, 6396–6407.
References
1 J. Lowther, J. H. Naismith, T. M. Dunn and D. J. Campopiano,
Biochem. Soc. Trans., 2012, 40, 547–554.
2 H. Schulze and K. Sandhoff, Cold Spring Harbor Perspect. Biol., 2011,
3, a004804.
3 X. Zhang and F. L. Kiechle, Ann. Clin. Lab. Sci., 2004, 34, 3–13.
4 R. D. Cummings, Mol. BioSyst., 2009, 5, 1087–1104.
5 R. L. Schnaar, J. Mol. Biol., 2016, 428, 3325–3336.
6 A. R. Mather and L. J. Siskind, Adv. Exp. Med. Biol., 2011, 721, 121–138. 47 Y. Chen, V. Thon, Y. Li, H. Yu, L. Ding, K. Lau, J. Qu, L. Hie and
7 A. H. Merrill, Jr., J. Biol. Chem., 2002, 277, 25843–25846. X. Chen, Chem. Commun., 2011, 47, 10815–10817.
8 J. I. Rearick, J. E. Sadler, J. C. Paulson and R. L. Hill, J. Biol. Chem., 48 K. Lau, V. Thon, H. Yu, L. Ding, Y. Chen, M. M. Muthana, D. Wong,
1979, 254, 4444–4451.
9 S. C. Basu, Glycobiology, 1991, 1, 469–475.
R. Huang and X. Chen, Chem. Commun., 2010, 46, 6066–6068.
49 Y. Li, M. Xue, X. Sheng, H. Yu, J. Zeng, V. Thon, Y. Chen, M. M. Muthana,
P. G. Wang and X. Chen, Bioorg. Med. Chem., 2016, 24, 1696–1705.
50 X. Chen, J. Fang, J. Zhang, Z. Liu, J. Shao, P. Kowal, P. Andreana and
P. G. Wang, J. Am. Chem. Soc., 2001, 123, 2081–2082.
51 M. Chen, L. L. Chen, Y. Zou, M. Xue, M. Liang, L. Jin, W. Y. Guan,
J. Shen, W. Wang, L. Wang, J. Liu and P. G. Wang, Carbohydr. Res.,
2011, 346, 2421–2425.
10 B. Guilbert and S. L. Flitsch, J. Chem. Soc., Perkin Trans. 1, 1994,
1181–1186.
11 M. D. Vaughan, K. Johnson, S. DeFrees, X. Tang, R. A. Warren and
S. G. Withers, J. Am. Chem. Soc., 2006, 128, 6300–6301.
12 E. A. Masson, E. Sibille, L. Martine, F. Chaux-Picquet, L. Bretillon
and O. Berdeaux, J. Lipid Res., 2015, 56, 1821–1835.
13 L. Svennerholm and P. Fredman, Biochim. Biophys. Acta, 1980, 617, 52 J. Fang, J. Li, X. Chen, Y. Zhang, J. Wang, Z. Guo, W. Zhang, L. Yu,
97–109.
K. Brew and P. G. Wang, J. Am. Chem. Soc., 1998, 120, 6635–6638.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017