Journal of the American Chemical Society
Communication
(5) Lukoyanov, D.; Dikanov, S. A.; Yang, Z.-Y.; Barney, B. M.;
Samoilova, R. I.; Narasimhulu, K. V.; Dean, D. R.; Seefeldt, L. C.;
Hoffman, B. M. J. Am. Chem. Soc. 2011, 133, 11655.
of NH3. For comparison, a related monometallic iron complex of
a silyl-anchored bisphosphine thioether ligand, {[SiPiPr2SAd]-
FeN2}{BArF },9b produced <2 equiv of NH3 under the same
4
(6) (a) Einsle, O.; Tezcan, A.; Andrade, S. L. A.; Schmid, B.; Yoshida,
M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696. (b) Spatzal, T.;
Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.;
Rees, D. C.; Einsle, O. Science 2011, 334, 940. (c) Lancaster, K. M.;
Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.;
Bergmann, U.; DeBeer, S. Science 2011, 334, 974. (d) Lancaster, K. M.;
Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013,
135, 610. (e) Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012,
337, 1672.
(7) (a) Lee, H. I.; Igarashi, R. Y.; Laryukhin, M.; Doan, P. E.; Dos
Santos, P. C.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. J. Am. Chem.
Soc. 2004, 126, 9563. (b) Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J.
B.; Rees, D. C. Science 2014, 345, 1620.
(8) (a) Yoshida, T.; Adachi, T.; Kaminaka, M.; Ueda, T.; Higuchi, T. J.
Am. Chem. Soc. 1988, 110, 4872. (b) Pombeiro, A. J. L.; Hitchcock, P. B.;
Richards, R. L. J. Chem. Soc., Dalton Trans. 1987, 319. (c) Cruz-Garritz,
D.; Torrens, H.; Leal, J.; Richards, R. L. Transition Met. Chem. 1983, 8,
127. (d) Morris, R. H.; Ressner, J. M.; Sawyer, J. F.; Shiralian, M. J. Am.
Chem. Soc. 1984, 106, 3683. (e) Dilworth, J. R.; Hu, J.; Thompson, R.
M.; Hughes, D. L. Chem. Commun. 1992, 551. (f) Seymore, S. B.; Brown,
S. N. Inorg. Chem. 2006, 45, 9540. (g) Mori, H.; Seino, H.; Hidai, M.;
Mizobe, Y. Angew. Chem., Int. Ed. 2007, 46, 5431. (h) Sellmann, D.;
Hautsch, B.; Rosler, A.; Heinemann, F. W. Angew. Chem., Int. Ed. 2001,
40, 1505. (i) Sellmann, D.; Hille, A.; Rosler, A.; Heinemann, F. W.; Moll,
M. Inorg. Chim. Acta 2004, 357, 3336. (j) Fernandez, P.; Sousa-Pedrares,
A.; Romero, J.; Duran, M. L.; Sousa, A.; Perez-Lourido, P.; Garcia-
Vazquez, J. A. Eur. J. Inorg. Chem. 2010, 814.
reaction conditions, even with longer reaction times (8 h); this
comparison suggests the possibility that some degree of
bimetallic cooperativity and/or the presence of the bridging
thiolate as a proton shuttle may be important in facilitating the
N−N bond cleavage of hydrazines catalyzed by 10. Mechanistic
studies will be interesting in this context since hydrazine has been
suggested as a possible intermediate in dinitrogen reduction
where the N−N bond is cleaved at a late stage; it can be
converted to NH3 either by further reduction or by a
disproportionation pathway that also produces N2.19
To conclude, a paradox in inorganic synthesis is the dichotomy
between the sulfur-rich coordination environment of the iron
and molybdenum centers of the FeMoco, and the dearth of well-
defined N2 adducts for these metals (and all transition metals)
featuring sulfur donor ligands.20 The synthetic work described
here has provided the first examples10 of thiolate-ligated Fe−N2
species via a bimetallic Fe-(μ-SAr)-Fe subunit benefiting from a
combination of phosphine and silyl donors. This subunit
moreover shows that the N2 ligands are retained across at least
three redox states (FeIIFeII, FeIIFeI, FeIFeI) in the presence of the
thiolate donor. This is significant because formally low-valent
iron sites in the presence of S2− or SH− are plausible
intermediates of biological nitrogen fixation but are not well
represented in the synthetic literature. Synthetic access to
terminally bonded iron hydrides in the presence of the bridging
thiolate and N2 ligands has also been established.21 Finally, the
ability of the present scaffold to mediate the stoichiometric and
catalytic cleavage of N−N bonds has been briefly explored.
Ongoing work will further examine the reactivity patterns of
these (N2)Fe-(μ-SAr)-Fe(N2) subunits in the context of
nitrogen fixation and reduction catalysis (e.g., H+, CO2) more
generally.
(9) (a) Bart, S.; Lobkovsky, E.; Bill, E.; Wieghardt, K.; Chirik, P. J.
Inorg. Chem. 2007, 46, 7055. (b) Takaoka, A.; Mankad, N. P.; Peters, J.
C. J. Am. Chem. Soc. 2011, 133, 8440.
(10) We are aware of recent work from the Holland group at Yale,
where an Fe−N2 complex that features both thiolate and arene donors
has been characterized (with permission; personal communication).
(11) (a) Lee, S. C.; Lo, W.; Holm, R. H. Chem. Rev. 2014, 114, 3579.
(b) Rao, P. V.; Holm, R. H. Chem. Rev. 2004, 104, 527. (c) Malinak, S.
M.; Coucouvanis, D. Prog. Inorg. Chem. 2001, 49, 599.
(12) (a) Lane, R. W.; Ibers, J. A.; Frankel, R. B.; Papaeftymiou, G. C.;
Holm, R. H. J. Am. Chem. Soc. 1977, 99, 84. (b) Lee, S. C.; Holm, R. H.
Chem. Rev. 2004, 104, 1135. (c) Malianak, S. M.; Coucouvanis, D. Prog.
Inorg. Chem. 2001, 49, 599.
(13) (a) Anderson, J. S.; Peters, J. C. Angew. Chem., Int. Ed. 2014, 53,
5978. (b) Rodriguez, M. M.; Stubbert, B. D.; Scarborough, C. C.;
Brennessel, W. W.; Bill, E.; Holland, P. L. Angew. Chem., Int. Ed. 2012,
51, 8247.
(14) Rittle, J.; McCrory, C.; Peters, J. C. J. Am. Chem. Soc. 2014, 136,
13853.
(15) (a) Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.;
Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. (b) Hoffman, B. M.; Dean, D.
R.; Seefeldt, L. C. Acc. Chem. Res. 2009, 42, 609.
ASSOCIATED CONTENT
* Supporting Information
Synthetic and spectroscopic details for new compounds; crystal
structures of 7, 9−11, and 13; details of NH3 production
experiments. The Supporting Information is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
(16) Kinney, R. A.; Saouma, C. T.; Peters, J. C.; Hoffman, B. M. J. Am.
Chem. Soc. 2012, 134, 12637.
The authors declare no competing financial interest.
(17) Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.
(18) (a) Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.; Qu, J. J. Am.
Chem. Soc. 2008, 130, 15250. (b) Chang, Y.-H.; Chan, P.-M.; Tsai, Y.-F.;
Lee, G.-H.; Hsu, H.-F. Inorg. Chem. 2014, 53, 664. (c) Umehara, K.;
Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 6754.
(19) Davis, L. C. Arch. Biochem. Biophys. 1980, 204, 270.
(20) Sellmann, D.; Sutter, J. Acc. Chem. Res. 1997, 30, 460.
(21) Diiron thiolate-bridged iron hydrides are also structurally relevant
to hydrogenases. See, for example: Wang, W.; Rauchfuss, T. B.; Zhu, L. J.
Am. Chem. Soc. 2014, 136, 5773.
ACKNOWLEDGMENTS
■
This work was supported by the NIH (GM 070757) and the
Gordon and Betty Moore Foundation. We thank Larry Henling
and Michael Takase for crystallographic assistance.
REFERENCES
■
(1) (a) MacKay, B. A.; Fryzuk, M. D. Chem. Rev. 2004, 104, 385.
(b) Peters, J. C.; Mehn, M. P. In Activation of Small Molecules; Tolman,
W. B., Ed.; Wiley-VCH: Weinheim, 2006; p 81.
(2) MacLeod, K. C.; Holland, P. L. Nat. Chem. 2013, 5, 559.
(3) Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883.
(4) Barrier
Weinheim, 2015; Chap. 9.
̀
e, F. In Biosinspired Catalysis: Metal-Sulfur Complexes; Wiley:
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX