G. Xu et al.: High-temperature thermoelectric properties of the Ca1−x Bix MnO3 system
TABLE I. Resistivity ( and 1000), thermoelectric power (S300 and S1000), thermal conductivity ( and 1000) at 300 and 1000 K, power
300
300
factor (PF), and dimensionless figure of merit (ZT ) at 1000 K of the Ca1−xBixMnO3 (0.02 ഛ x ഛ 0.20) system.
S300
S1000
1000
(W m−1 K−1
PF1000
ZT
(1000 K)
300
1000
300
x
(m⍀ cm)
(m⍀ cm)
(V K−1
)
(V K−1
)
(W m−1 K−1
)
)
(10−4 W m−1 K−2
)
0.02
0.04
0.06
0.08
0.10
0.15
0.20
20.6
5.9
4.8
4.6
4.2
3.1
3.3
36.5
11.5
10.1
8.9
8.0
5.8
−174
−142
−115
−84
−77
−37
−220
−177
−140
−112
−99
и и и
3.6
и и и
и и и
и и и
3.0
и и и
3.1
и и и
и и и
и и и
3.6
1.35
2.64
1.97
1.41
1.24
0.90
0.95
и и и
0.086
и и и
и и и
и и и
−70
−66
0.025
и и и
4.6
−25
и и и
и и и
ACKNOWLEDGMENT
This work was supported in part by the Industrial
Technology Research Grant Program in 2001 from the
New Energy and Industrial Technology Development
Organization (NEDO) of Japan.
REFERENCES
1. J.F. Nakahara, T. Takeshita, M.J. Tschetter, B.J. Beaudry, and
K.A. Gshneidner Jr., J. Appl. Phys. 63, 2331 (1988).
2. A. Boyer and E. Cisse, Mater. Sci. Eng. B 113, 103 (1992).
3. R.M. Ware and D.J. McNeill, Proc. IEEE 111, 178 (1964).
4. T. Kojima, Phys. Status Solidi A 111, 233 (1989).
5. I. Nishida, Phys. Rev. B 7, 2710 (1970).
6. G.A. Slack and M.A. Hussain, J. Appl. Phys. 70, 2694 (1991).
7. C.B. Vining, J. Appl. Phys. 69, 331 (1991).
8. F.D. Rosi, Solid State Electron. 11, 833 (1968).
9. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56,
R12685 (1997).
10. R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani,
and S. Sodeoka, Jpn. J. Appl. Phys. 39, L1127 (2000).
11. S. Li, R. Funahashi, I. Matsubara, K. Ueno, S. Sodeoka, and
H. Yamada, Chem. Mater. 12, 2424 (2000).
12. R. Funahashi, I. Matsubara, and S. Sodeoka, Appl. Phys. Lett. 76,
2385 (2000).
13. R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362 (2001).
14. M. Kazeoka, H. Hiramatsu, W.S. Seo, and K. Koumoto, J. Mater.
Res. 13, 523 (1998).
15. M. Ohtaki, D. Ogura, K. Eguchi, and H. Arai, J. Mater. Chem. 4,
653 (1994).
16. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79,
1816 (1996).
17. M. Yasukawa and N. Murayama, J. Mater. Sci. Lett. 16, 1731
(1997).
18. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai,
J. Solid State Chem. 120, 105 (1995).
FIG. 6. Temperature dependence of figure of merit Z () and ZT (᭡)
of Ca0.96Bi0.04MnO3.
each other and a compromise between them is reached at
an optimal carrier concentration. The best thermoelectric
performance was obtained in the x ס
0.04 sample.
The relationship between figure of merit Z and tem-
perature of Ca0.96Bi0.04MnO3 is presented in Fig. 6. The
maximum Z values obtained here are 1.0 × 10−4 and
0.86 × 10−4 K−1 at 600 and 1000 K, respectively. Ac-
cordng to the trends shown in Fig. 6, the value of ZT can
reach 0.1 at 1173 K. The good TE performance and the
excellent high-temperature durability in air of
Ca1−xBixMnO3 suggest the oxides are of interest as po-
tential high-temperature TE materials.
19. T. Kobayashi, H. Takizawa, T. Endo, T. Sato, H. Taguchi, and
M. Nagao, J. Solid State Chem. 92, 116 (1991).
20. I. Matsubara, R. Funahashi, T. Takeuchi, and S. Sodeoka, Appl.
Phys. Lett. 78, 3627 (2001).
21. S. Hashimoto and H. Iwahara, Mater. Res. Bull. 35, 2253 (2000).
22. Gaojie Xu (unpublished).
23. P.N. Santhosh, J. Goldberger, P.M. Woodward, T. Vogt,
W.P. Lee, and A.J. Epstein, Phys. Rev. B 62, 14928 (2000).
24. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7,
85 (1997).
25. M. Yasukawa and N. Murayama, J. Mater. Sci. 32, 6489 (1997).
26. R. Funahashi (unpublished).
IV. CONCLUSION
The high-temperature thermoelectric properties of
Ca1−xBixMnO3 (0.02 ഛ x ഛ 0.20) polycrystalline
samples were investigated carefully. Bi doping causes a
rapid decrease in . The samples with 0.22 < x ഛ 0.10
show rather low and fairly large |S| (100–200 V K−1),
suggesting promising TE materials. The highest PF was
reached in the x ס
0.04 sample, and Z for this sample is
1.0 × 10−4 K−1 at 600 K and 0.86 × 10−4 K−1 at 1000 K.
J. Mater. Res., Vol. 17, No. 5, May 2002
Downloaded: 18 Mar 2015
1095
IP address: 129.93.24.73