(s, 3H) ppm; 13C NMR (CDCl3): d 207.53, 140.55, 130.89, 130.18,
115.59, 44.29, 20.67 ppm; IR (CH2Cl2): mmax/cm−1 = 2064, 2023,
1983 (CO); HR-MS (EI) : m/z calc. for [M+]: 572.7616; found:
572.7614.
2 M. W. W. Adams, Biochim. Biophys. Acta, 1990, 1020, 115–145.
3 M. Frey, ChemBioChem, 2002, 3, 153–160.
4 (a) J. W. Peters, W. N. Lanzilotta, B. J. Lemon and L. C. Seefeldt,
Science, 1998, 282, 1853–1858; (b) Y. Nicolet, C. Piras, P. Legrand,
E. C. Hatchikian and J. C. Fontecilla-Camps, Structure, 1999, 7, 13–
23; (c) Z. Chen, B. J. Lemon, S. Huang, D. J. Swartz, J. W. Peters and
K. A. Bagley, Biochemistry, 2002, 41, 2036–2043; (d) A. L. De Lacey,
C. Stadler, C. Cavazza, E. C. Hatchikian and V. M. Fernandez, J. Am.
Chem. Soc., 2000, 122, 11232–11233.
X-Ray crystal structure determination of complexes 7–9
Diffraction measurements of 7–9 were made on a SMART APEX
5 Y. Nicolet, A. L. Lacey, X. Verne´de, V. M. Fernandez, E. C. Hatchikian
and J. C. Fontecilla-Camps, J. Am. Chem. Soc., 2001, 123, 1596–1601.
6 H. J. Han and M. B. Hall, J. Am. Chem. Soc., 2001, 123, 3828–3829.
7 (a) M. Schmidt, S. M. Contakes and T. B. Rauchfuss, J. Am. Chem.
Soc., 1999, 121, 9736–9737; (b) E. J. Lyon, I. P. Georgakaki, J. H.
Reibenspies and M. Y. Darensbourg, J. Am. Chem. Soc., 2001, 123,
3268–3278; (c) F. Gloaguen, J. D. Lawrence, M. Schmidt, S. R. Wilson
and T. B. Rauchfuss, J. Am. Chem. Soc., 2001, 123, 12518–12527; (d) F.
Gloaguen, J. D. Lawrence and T. B. Rauchfuss, J. Am. Chem. Soc.,
2001, 123, 9476–9477; (e) F. Gloaguen, J. D. Lawrence, T. B. Rauchfuss,
M. Be´nard and M. M. Rohmer, Inorg. Chem., 2002, 41, 6573–6582;
(f) X. Zhao, I. P. Georgakaki, M. L. Miller, J. C. Yarbrough and M. Y.
Darensbourg, J. Am. Chem. Soc., 2001, 123, 9710–9711; (g) X. Zhao,
I. P. Georgakaki, M. L. Miller, R. Mejia-Rodriguez, C. Y. Chiang and
M. Y. Darensbourg, Inorg. Chem., 2002, 14, 3917–3928; (h) D. Chong,
I. P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M. P.
Soriaga and M. Y. Darensbourg, Dalton Trans., 2003, 4158–4163; (i) R.
Mejia-Rodriguez, D. Chong, J. H. Reibenspies, M. P. Soriaga and M. Y.
Darensbourg, J. Am. Chem. Soc., 2004, 126, 12004–12014.
II diffractometer. Data were collected at 298 K using graphite-
˚
monochromated Mo-Ka radiation (k = 0.71073 A) in the x–2h
scan mode. Data processing was accomplished with the SAINT
processing program.27 Intensity data were corrected for absorption
by the SADABS program.28 The structures were solved by direct
2
methods and refined by full-matrix least-squares techniques on Fo
using the SHELXTL 97 crystallographic software package.29 All
non-hydrogen atoms were refined anisotropically. All hydrogen
atoms were located by using the geometric method, and their
positions and thermal parameters were fixed during the structure
refinement. Details of crystal data, data collections, and structure
refinements are summarized in Table 4.
CCDC reference numbers 665465 for 7, 665466 for 8 and 665467
for 9.
For crystallographic data in CIF or other electronic format see
DOI: 10.1039/b717497g
8 (a) S. J. George, C. Cui, M. Razavet and C. J. Pickett, Chem.–Eur. J.,
2002, 8, 4037–4046; (b) M. Razavet, S. C. Davies, D. L. Hughes, J. E.
Barclay, D. J. Evans, S. A. Fairhurst, X. Liu and C. J. Pickett, Dalton
Trans., 2003, 586–595; (c) D. J. Evans and C. J. Pickett, Chem. Soc.
Rev., 2003, 32, 268–275; (d) C. Tard, X. Liu, S. K. Ibrahim, M. Bruschi,
L. D. Glola, S. C. Davies, X. Yang, L. Wang, G. Sawers and C. J. Pickett,
Nature, 2005, 433, 610–613.
Electrochemistry studies of complexes 7–9
The acetonitrile (Aldrich, spectroscopy grade) used for electro-
chemical measurements was dried with molecular sieves and then
freshly distilled from CaH2 under N2. A solution of 0.05 M n-
Bu4NPF6 (Fluka, electrochemical grade) in CH3CN was used as
electrolyte in all cyclic voltammetric experiments. The supporting
electrolyte solution was degassed by bubbling with dry argon
for 10 min before measurement. Electrochemical measurements
were made with a BAS 100B electrochemical workstation at a
scan rate of 100 mV s−1. All voltammograms were obtained in
a conventional three-electrode cell under argon and at ambient
temperature. The working electrode was a glassy carbon disc
(diameter 3 mm) that was successively polished with 3-lm and
1-lm diamond pastes and sonicated in ion-free water for 15 min
prior to use. The experimental reference electrode was a non-
aqueous Ag/Ag+ electrode (0.01 M AgNO3–0.1 M n-Bu4NPF6 in
CH3CN) and the counter electrode was a platinum wire.
9 (a) H. Li and T. B. Rauchfuss, J. Am. Chem. Soc., 2002, 104, 726–727;
˚
(b) S. Ott, M. Kritikos, B. Akermark, L. Sun and R. Lomoth, Angew.
Chem., Int. Ed., 2004, 43, 1006–1009; (c) T. Liu, M. Wang, Z. Shi, H.
˚
Cui, W. Dong, J. Chen, B. Akermark and L. Sun, Chem.–Eur. J., 2004,
10, 4474–4479; (d) F. Wang, M. Wang, X. Liu, K. Jin, W. Dong, G.
˚
Li, B. Akermark and L. Sun, Chem. Commun., 2005, 3221–3223; (e) L.
Song, M. Tang, F. Su and Q. Hu, Angew. Chem., Int. Ed., 2006, 45,
1130–1133.
10 (a) J. D. Lawrence, H. Li and T. B. Rauchfuss, Chem. Commun., 2001,
1482–1483; (b) J. D. Lawrence, H. Li, T. B. Rauchfuss, M. Be´nard and
M. M. Rohmer, Angew. Chem., Int. Ed., 2001, 40, 1768–1771; (c) S. Ott,
˚
M. Borgstro¨m, M. Kritikos, R. Lomoth, J. Bergquist, B. Akermark, L.
Hammarstro¨m and L. Sun, Inorg. Chem., 2004, 43, 4683–4692.
˚
11 (a) P. Li, M. Wang, C. He, G. Li, X. Liu, C. Chen, B. Akermark and L.
Sun, Eur. J. Inorg. Chem., 2005, 2506–2513; (b) W. Dong, M. Wang, X.
Liu, K. Jin, G. Li, F. Wang and L. Sun, Chem. Commun., 2006, 305–
307; (c) L. Schwartz, G. Eilers, L. Eriksson, A. Gogoll, R. Lomoth
and S. Ott, Chem. Commun., 2006, 520–522; (d) J. Hou, X. Peng, Z.
Zhou, S. Sun, X. Zhao and S. Gao, J. Organomet. Chem., 2006, 691,
4633–4640; (e) P. Li, M. Wang, C. He, G. Li, X. Liu, K. Jin and L. Sun,
Eur. J. Inorg. Chem., 2007, 3718–3727.
Acknowledgements
12 A. Le Cloirec, S. P. Best, S. Borg, S. C. Davies, D. J. Evana, D. L.
Hughes and C. J. Pickett, Chem. Commun., 1999, 2285–2286.
13 (a) J. L. Nehring and D. M. Heinekey, Inorg. Chem., 2003, 42, 4288–
4292; (b) C. A. Boyke, T. B. Rauchfuss, S. R. Wilson, M. M. Rohmer
and M. Be´nard, J. Am. Chem. Soc., 2004, 126, 15151–15160; (c) J. Hou,
X. Peng, J. Liu, Y. Gao, X. Zhao, S. Gao and K. Han, Eur. J. Inorg.
Chem., 2006, 4679–4686.
14 (a) J. F. Capon, S. E. Hassnaoui, F. Gloaguen, P. Schollhammer and J.
Talarmin, Organometallics, 2005, 24, 2020–2022; (b) J. W. Tye, J. Lee,
H. W. Wang, R. Mejia-Rodriguez, J. H. Reibenspies, M. B. Hall and
M. Y. Darensbourg, Inorg. Chem., 2005, 44, 5550–5552; (c) L. Duan,
M. Wang, P. Li, Y. Na, N. Wang and L. Sun, Dalton Trans., 2007,
1277–1283; (d) D. Morvan, J. F. Capon, F. Gloaguen, A. L. Goff, M.
Marchivie, F. Michaud, P. Schollhammer, J. Talarmin and J. J. Yaouanc,
Organometallics, 2007, 26, 2042–2052.
We are grateful to the National Natural Science Foundation of
China (Projects 20725621 and 20706008) and the Cultivation Fund
of the Key Scientific and Technical Innovation Project, Ministry
of Education of China (707016) for financial support of this work.
Helpful discussions with Dr. Ping Li are gratefully acknowledged.
References
1 (a) M. W. W. Adams and E. I. Stiefel, Science, 1998, 282, 1842–1843;
(b) R. Cammack, Nature, 1999, 397, 214–215; (c) M. Y. Darensbourg,
E. J. Lyon and J. J. Smee, Coord. Chem. Rev., 2000, 206–207, 533–561;
(d) M. Y. Darensbourg, E. J. Lyon, X. Zhao and I. P. Georgakaki,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3683–3688; (e) X. Liu, S. K.
Ibrahim, C. Tard and C. J. Pickett, Coord. Chem. Rev., 2005, 249, 1641–
1652.
15 (a) L. Song, Z. Yang, H. Bian and Q. Hu, Organometallics, 2004, 23,
3082–3084; (b) L. Song, Z. Yang, H. Bian, Y. Liu, H. Wang, X. Liu
and Q. Hu, Organometallics, 2005, 24, 6126–6135; (c) L. Song, Z.
Yang, Y. Hua, H. Wang, Y. Liu and Q. Hu, Organometallics, 2007,
2134 | Dalton Trans., 2008, 2128–2135
This journal is
The Royal Society of Chemistry 2008
©