P. Y. S. Lam et al. / Tetrahedron Letters 42 (2001) 2427–2429
2429
B(OH)2
H
NH2
N
N
N
Cu(OAc)2 / pyridine / CH2Cl2
44%
O
O
4Å molecular sieves / RT
1
24
Scheme 3. N-Arylation of 2-picolinamide with p-toluylboronic acid.
Activation
O
R
Ar
A2N
R'
H2N
Ar
N
H
N
Iterative amidation,
H2N
N
1. N-arylation
N
peptide
n
peptide
R'
peptide
R' Ar'
O
N-arylation and
removal of A
2. Removal
of A
O
O
Peptoids with selective
N-aryl groups
A = activating and
protecting group
Scheme 4. Proposed N-arylation of peptides.
References
(f) Jung, M. E.; Lazarova, T. I. J. Org. Chem. 1999, 64,
2976–2977; (g) Herradura, P. S.; Pendola, K. A.; Guy, R.
K. Org. Lett. 2000, 2, 2019–2022.
1. Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101–1104
and references cited therein.
8. Experimental procedure for thiazolecarboxamide 21:
Oxygen was bubbled into a solution of 2 mL of DMF
during 2 min. PhSi(OMe)3 (0.125 mL, 0.667 mmol, 2
equiv.), 2-methylthiazole-4-carboxamide 20 (47.4 mg,
0.333 mmol, 1 equiv.), Cu(OAc)2 (67 mg, 0.367 mmol, 1.1
equiv.) and TBAF (0.67 mL, 0.667 mmol, 2 equiv.) were
added in order. The progress of the reaction was moni-
tored by TLC (eluent: 5% MeOH/CHCl3), after a mini-
work up of an aliquot. When the reaction was done (48
h), 4 mL of NH3 in MeOH (2 M) was added, the solution
was filtered through glasswool on a pad of Celite® and
washed with methanol (6–7 ml) until it was colorless. The
solvent was evaporated under reduced pressure and the
residue was purified by silica gel chromatography. N-4-
Phenyl-2-methyl-1,3-thiazole-4-carboxamide 21 was iso-
lated (46.2 mg, 64% yield). MS (ES) m/z 219.2 (80%)
(M+H)+; 1H NMR (CDCl3) l 9.2 (s, 1H), 8.05 (s, 1H),
7.72 (d, 2H, J=7.7 Hz), 7.37 (t, 2H, J=8 Hz), 7.14 (t,
1H, J=7.4 Hz), 2.76 (s, 3H); HRMS calcd for [M+H]
219.0592, found 219.0587.
9. We recently found that Kang and co-workers have suc-
cessfully replaced hypervalent aryl siloxanes with hyper-
valent diaryliodonium salt for N-arylation of amines,
azoles and amides: Kang, S.-K.; Lee, S.-H.; Lee, D.
Synlett 2000, 1022–1024.
10. The alternative strategy of N-arylation before peptide
amide bond formation is not efficient due to the low
nucleophilicity of the resulting N-arylated amine under
standard peptide coupling conditions.
2. Shakespeare, W. C. Tetrahedron Lett. 1999, 40, 2035–
2038 and references cited therein.
3. Hartwig, J. F.; Kawatsura, M.; Hauck, S. L.; Shaugh-
nessy, K. H.; Alcaza-Roman, L. M. J. Org. Chem. 1999,
40, 2035–2038.
4. Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He,
M.; DeShong, P.; Clark, C. G. P. J. Am. Chem. Soc.
2000, 22, 7600–7601.
5. (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.;
Averill, K.; Chan, D. M. T.; Combs, A. P. Synlett 2000,
674–676; (b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.;
Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tetrahedron Lett. 1998, 39, 2941–2944; (c) Evans, D. A.;
Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39,
2937–2940; (d) Chan, D. M. T.; Monaco, K. L.; Wang,
R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933–
2936.
6. For solid-phase version of N-arylation see: (a) Combs, A.
P.; Rafalski, M. J. Comb. Chem. 2000, 2, 29–32. (b)
Combs, A. P.; Saubern, S.; Rafalski, M.; Lam, P. Y. S.
Tetrahedron Lett. 1999, 40, 1623–1626.
7. (a) Collot, V.; Bovy, P. R.; Rault, S. Tetrahedron Lett.
2000, 41, 9053–9057; (b) Petrassi, H. M.; Sharpless, K.
B.; Kelly, J. W. Org. Lett. 2001, 3, 139–142; (c) Collman,
J. P.; Zhong, M. Org. Lett. 2000, 2, 1233–1236; (d)
Cundy, D. J.; Forsyth, S. A. Tetrahedron Lett. 1998, 39,
7979–7982; (e) Mederski, W. W. K. R; Lefort, M.; Ger-
mann, M.; Kux, D. Tetrahedron 1999, 55, 12757–12770;
.
.