Journal of the American Chemical Society
Communication
Scheme 2. Six-Step Synthesis of a trans-Clerodane Natural
Product
REFERENCES
■
(1) (a) Giese, B. Angew. Chem., Int. Ed. Engl. 1983, 22, 753. (b) Barton,
D. H. R.; Sas, W. Tetrahedron 1990, 46, 3419. (c) Russell, G. A.; Shi, B.
Z.; Jiang, W.; Hu, S.; Kim, B. H.; Baik, W. J. Am. Chem. Soc. 1995, 117,
3952. (d) Togo, H.; Taguchi, R.; Yamaguchi, K.; Yokoyama, M. J. Chem.
Soc., Perkin Trans. 1 1995, 2135. (e) Schnermann, M. J.; Overman, L. E.
Angew. Chem., Int. Ed. 2012, 51, 9576. (f) Lo, J. C.; Yabe, Y.; Baran, P. S.
J. Am. Chem. Soc. 2014, 136, 1304.
(2) In addition to halides, a number of activating groups have been
reported that allow tertiary alcohols to be used as radical precursors. For
existing methods that employ oxalate or xanthate derivatives, see
(a) Dolan, S. C.; MacMillan, J. J. Chem. Soc., Chem. Commun. 1985,
1588. (b) Barton, D. H. R.; Crich, D. J. Chem. Soc., Perkin Trans. 1 1986,
1603. (c) Coppa, F.; Fontana, F.; Lazzarini, E.; Minisci, F.; Pianese, G.;
Zhao, L. Chem. Lett. 1992, 1295. (d) Crich, D.; Fortt, S. M. Synthesis
1987, 1987, 35. (e) Coppa, F.; Fontana, F.; Lazzarini, E.; Minisci, F.
Chem. Lett. 1992, 1299. (f) Togo, H.; Matsubayashi, S.; Yamazaki, O.;
Yokoyama, M. J. Org. Chem. 2000, 65, 2816.
(3) (a) Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem.
Soc. 2013, 135, 15342. (b) Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.;
Overman, L. E. J. Org. Chem. 2015, 80, 6012.
(4) For recent reviews on photoredox catalysis, see (a) Tucker, J. W.;
Stephenson, C. R. J. J. Org. Chem. 2012, 77, 1617. (b) Prier, C. K.;
Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (c) Xie,
J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36. (d) Schultz, D.
M.; Yoon, T. P. Science 2014, 343, 1239176.
(5) For selected reviews on radical conjugate additions in general, see
(a) Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. 1998, 37, 2562.
(b) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163. (c) Sibi, M.
P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263.
(d) Srikanth, G. S. C.; Castle, S. L. Tetrahedron 2005, 61, 10377.
(6) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc.
2014, 136, 10886.
(7) Lowry, M. S.; Goldsmith, J. L.; Slinker, J. D.; Rohl, R.; Pascal, R. A.;
Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
measurements.
(9) (a) Bortolamei, N.; Isse, A. A.; Gennaro, A. Electrochim. Acta 2010,
intermediate.
(10) This disproportionation is unique to tert-alkyl hydrogen oxalates.
Alkyl hydrogen oxalates derived from primary and secondary alcohols
are stable and do not readily disproportionate.
(11) The cesium oxalates were most conveniently prepared via
hydrolysis of the corresponding tert-alkyl methyl oxalates with aqueous
CsOH. This route avoids the potentially unstable alkyl hydrogen oxalate
moiety; the tert-alkyl methyl oxalate intermediates are stable to silica
column chromatography and aqueous work up. The cesium oxalates
may also be prepared in a simple one-pot procedure directly from
(12) Lithium, sodium, potassium, and cesium oxalates all gave similar
chosen for development under the assumption that they were likely to
have favorable physical properties over a wide range of oxalate
substrates.
The reaction also enabled a short synthesis of 70,15 a member
of the trans-clerodane family of natural products (Scheme 2).16
Activation of the tertiary alcohol of known intermediate 6917 is
particularly challenging because the trans-decalin ring system
places the tertiary alcohol in a 1,3-diaxial relationship with the
angular methyl substituent. This severe steric interaction had
previously prevented the preparation of the N-phthalimidoyl
oxalate derivative.17 However, acylation of 69 with methyl
chlorooxoacetate proceeded in excellent yield. In situ hydrolysis
with aqueous CsOH allowed pure cesium oxalate 44 to be
isolated in one step and high yield from alcohol 69 without the
use of chromatography. Coupling of oxalate 44 (1.5 equiv) with
commercially available 4-vinylfuran-2-one (1.0 equiv) proceeded
with perfect diastereo- and regioselectivity in 98% yield to give
trans-clerodane 70, a natural product that is a versatile precursor
of many other members of the trans-clerodane family.17
We have developed a new visible light photoredox-catalyzed
method for the generation of alkyl radicals from secondary and
tertiary alcohols and shown its use in the redox-neutral formation
of quaternary carbon centers through alkylation with electron-
deficient alkenes. The intermediate alkyl cesium oxalates are
bench-stable, easily handled, and provide a notably convenient
means to activate alcohols for radical generation.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and data. (PDF)
AUTHOR INFORMATION
■
(13) Rapid reaction of the coupled radical with additional acrylonitrile
is likely responsible for the low yield in this case.
Corresponding Authors
(14) (a) Damm, W.; Giese, B.; Hartung, J.; Hasskerl, T.; Houk, K. N.;
Hueter; Zipse, H. J. Am. Chem. Soc. 1992, 114, 4067. (b) Arnaud, R.;
Postlethwaite, H.; Barone, V. J. Phys. Chem. 1994, 98, 5913.
(15) Hara, N.; Asaki, H.; Fujimoto, Y.; Gupta, Y.; Singh, A.; Sahai, M.
Phytochemistry 1995, 38, 189.
(16) For general information on the clerodane terpenoids, see
(a) Merritt, A. T.; Ley, S. V. Nat. Prod. Rep. 1992, 9, 243.
(b) Tokoroyama, T. Synthesis 2000, 2000, 611.
Author Contributions
C.C.N., C.R.J., and Y.S. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(17) Muller, D. S.; Untiedt, N. L.; Dieskau, A. P.; Lackner, G. L.;
̈
Financial support at UC Irvine was provided by the NSF
(CHE1265964) and the NIHGMS (R01-GM098601) and at
Princeton by the NIHGMS (R01-GM078201).
Overman, L. E. J. Am. Chem. Soc. 2015, 137, 660.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX