Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Table 2. Summary of EL characterisation results of the objective compounds.
Acknowledgements
DOI: 10.1039/C9CC02355K
EQEa)/b)
[%]
Lmax CEmax
[cd m-2] [cd A-1]
CIE 1931
(x, y)
We acknowledge the support from the National Natural Science
Foundation of China (Nos. 21672156, 21771172, 51573108,
51673080, 21432005). We thank Dr. P. Wu and Dr. D. Luo of
Analytical & Testing Center, Sichuan University for photophysical
and crystallographic measurements.
Von
[V]
Device
DP-TXO2 3.3
P-TXO2 3.6
TPP-TXO2 3.1 10.5/4.6
4.0/3.5
4.0/3.4
9120
5730
10480
4.6
3.0
11.1
(0.154, 0.098)
(0.160, 0.085)
(0.152, 0.065)
a) Maximum external quantum efficiency; b) EQE at a luminance of 1000 cd m-2.
Conflicts of interest
bands than those of DP-TXO2 and P-TXO2 in solution, in both
neat and doped films, TPP-TXO2 shows not only the best deep-
blue color purity, but also the highest φPL, verifying the lessened
intermolecular interactions. More importantly, TPP-TXO2 has a
much higher kRISC of 1.4 × 107 s-1 than that of DP-TXO2 or P-TXO2
(Table S5). According to the DFT calculation results, the ultra-
high kRISC of TPP-TXO2 should originate from its quite small ΔE(S1-
There are no conflicts to declare.
Notes and references
1
2
S. Reineke, Nat. Mater., 2015, 14, 459.
A. K. Pal, S. Krotkus, M. Fontani, C. F. R. Mackenzie, D. B.
Cordes, A. M. Z. Slawin, I. D. W. Samuel and E. Zysman-
Colman, Adv. Mater., 2018, 30, 1804231.
(0.04 eV) as well as the large SOC element due to the
T2)
3
4
5
J. Lee, H.-F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M.
E. Thompson and S. R. Forrest, Nat. Mater., 2015, 15, 92.
K. Goushi, K. Yoshida, K. Sato and C. Adachi, Nat. Photonics,
2012, 6, 253.
a) D. Y. Kondakov, Philos. Trans. R. Soc. A: Math. Phys. Eng.
Sci., 2015, 373, 20140321; b) W. Li, Y. Pan, L. Yao, H. Liu, S.
Zhang, C. Wang, F. Shen, P. Lu, B. Yang and Y. Ma, Adv. Opt.
Mater., 2014, 2, 892.
markedly different nature of its LE-dominated T2 state (confined
to the TP segment) and HLCT-featured S1 state (localized in the
TXO2 and pyrene units) (Figure S11). Excitingly, the TPP-TXO2-
based OLED shows much enhanced EL performances than those
based on DP-TXO2 and P-TXO2, with more desirable color purity
of CIE (0.152, 0.065) approaching the deep-blue standard
defined by the European Broadcasting Union (EBU), together
with much higher EQEmax of 10.5% and Lmax of 10480 cd m-2.
Note that the high EQEmax of 10.5% indicates that the ultra-high
EUEmax even can approach 100% in this device (Table S10). More
fascinatingly, this device exhibits just moderate effciency roll-
off, with EQE values of 4.6% at 1000 cd m-2 and 2.8% at 10000
cd m-2. This should be attributeded to the quite fast RISC
process of the emitter material TPP-TXO2.
Since pyrene is also a widely-used building block of TTA materials,
to probe if TTA process contributes significantly to the total EL in
these devices, magneto-electroluminescence (MEL) response of a
DP-TXO2-based OLED is measured, because DP-TXO2 owns the
highest content of pyrene unit among these compounds. The MEL of
the device increases sharply within the low-field regime (< 50 mT),
then saturate in a higher B-field with increasing external magnetic
field at varied applied bias (Figure S20). Accordingly, the emitting
mechanism of DP-TXO2 should not be TTA-dominant.18
6
7
8
a) M. Bian, Z. Zhao, Y. Li, Q. Li, Z. Chen, D. Zhang, S. Wang, Z.
Bian, Z. Liu, L. Duan and L. Xiao, J. Mater. Chem. C, 2018, 6,
745; b) D. H. Ahn, J. H. Jeong, J. Song, J. Y. Lee and J. H. Kwon,
ACS Appl. Mater. Interfaces, 2018, 10, 10246.
a) C.-Y. Chan, L.-S. Cui, J. U. Kim, H. Nakanotani and C. Adachi,
Adv. Funct. Mater., 2018, 28, 1706023; b) L.-S. Cui, H. Nomura,
Y. Geng, J. U. Kim, H. Nakanotani and C. Adachi, Angew. Chem.
Int. Ed., 2017, 56, 1571.
a) J. Yang, Q. Guo, J. Wang, Z. Ren, J. Chen, Q. Peng, D. Ma and
Z. Li, Adv. Opt. Mater., 2018, 6, 1800342; b) Y. Pan, W. Li, S.
Zhang, L. Yao, C. Gu, H. Xu, B. Yang and Y. Ma, Adv. Opt.
Mater., 2014, 2, 510; c) J. Shi, Q. Ding, L. Xu, X. Lv, Z. Liu, Q.
Sun, Y. Pan, S. Xue and W. Yang, J. Mater. Chem. C, 2018, 6,
11063; d) B. Liu, Z.-W. Yu, D. He, Z.-L. Zhu, J. Zheng, Y.-D. Yu,
W.-F. Xie, Q.-X. Tong and C.-S. Lee, J. Mater. Chem. C, 2017, 5,
5402.
9
M. J. Sung, H. Chubachi, R. Sato, M.-K. Shin, S.-K. Kwon, Y.-J.
Pu and Y.-H. Kim, J. Mater. Chem. C, 2017, 5, 1090.
10 T. Sato, M. Uejima, K. Tanaka, H. Kaji and C. Adachi, J. Mater.
Chem. C, 2015, 3, 870.
11 N. Nijegorodov, V. Zvolinsky and P. V. C. Luhanga, J.
Photochem. Photobiol. A, 2008, 196, 219.
12 P. L. Santos, J. S. Ward, P. Data, A. S. Batsanov, M. R. Bryce, F.
B. Dias and A. P. Monkman, J. Mater. Chem. C, 2016, 4, 3815.
13 Q. Zhang, H. Kuwabara, W. J. Potscavage, S. Huang, Y. Hatae,
T. Shibata and C. Adachi, J. Am. Chem. Soc., 2014, 136, 18070.
14 X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu, D. Chen, Y. Cao and
15 J. Liu, Z. Li, T. Hu, X. Wei, R. Wang, X. Hu, Y. Liu, Y. Yi, Y.
Yamada-Takamura, Y. Wang and P. Wang, Adv. Opt. Mater.,
2019, 7, 1801190.
In summary, we demonstrate that pyrene is a quite promising
structural unit for the construction of high-performance HLCT
emitters. Different from traditional HLCT emitters, in these pyrene-
containing HLCT materials, an efficiently radiative 1CT state is
responsible for the high kr of these compounds, while the effective
1
3
SOC between their CT and LETn states may be an important factor
responsible for the high kRISC of these compounds. This represents a
new molecular design strategy for HLCT emitters capable of showing
both high kr and high kRISC, through which ultra-high EUE could be
realized. OLEDs based on one objective molecule of TPP-TXO2 can 16 X. K. Chen, D. Kim and J. L. Bredas, Acc. Chem. Res., 2018, 51,
2215.
emit deep-blue light with decent color purity of CIE (0.152, 0.065)
and EQEmax of 10.5%, together with high luminance of 10480 cd m-2.
This facile constructive strategy for HLCT OLED emitters can greatly
extend the design rationales, which will light up the enthusiasm of
scientists to develop more promising HLCT materials showing other
emission colors.
17 T. Ogiwara, Y. Wakikawa and T. Ikoma, J. Phys. Chem. A, 2015,
119, 3415.
18 a) Y. Xu, X. Liang, X. Zhou, P. Yuan, J. Zhou, C. Wang, B. Li, D. Hu,
X. Qiao, X. Jiang, L. Liu, S.-J. Su, D. Ma and Y. Ma, Adv. Mater.,
2019, 31, 1807388; b) P. Chen, Z. Xiong, Q. Peng, J. Bai, S. Zhang,
F. Li, Adv. Opt. Mater., 2014, 2, 142.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins