Whelan et al.
881
L.J. Hofland, J.W. Koper, and S.W. Lamberts. Eur. J. Nucl.
Med. 20, 716 (1993); (b) W.H. Bakker, R. Albert, C. Bruns,
W.A.P. Breeman, L.J. Hofland, P. Marbach, J. Pless, D. Pralet,
B. Stolz, J.W. Koper, S.W.J. Lamberts, T.J. Visser, and E.P.
Krenning. Life Sci. 49, 1583 (1991).
General procedure for hydrogenation
A Fischer–Porter tube was charged in a drybox with resin-
tethered peptide (50–200 mg), Wilkinson’s catalyst (1–5 mg),
dry and deoxygenated dichloromethane (9 mL), and dry and
deoxygenated methanol (1 mL). The line and reaction vessel
were degassed with three vacuum–argon cycles each before
the tube was pressurised to 60 psi of hydrogen. The reaction
was stirred gently at room temperature overnight. The resin
was collected via filtration and washed with dichloro-
methane, dimethylformamide, and finally methanol, before
being allowed to dry in vacuo. An aliquot of the resin was
removed and the peptide cleaved from the resin as described
previously.
10. J.S. Lewis, M.R. Lewis, A. Srinivasan, M.A. Schmidt, J.
Wang, and C.J.J. Anderson. J. Med. Chem. 42, 1341 (1999).
11. (a) T. Maina, B. Nock, A. Nikolopoulou, P. Sotiriou, G.
Loudos, D. Maintas, P. Cordopatis, and E. Choitellis. Eur. J.
Nucl. Med. 29, 742 (2002); (b) J. Fichna and A. Janecka.
Bioconjugate Chem. 14, 3 (2003).
12. (a) H. Kolan, J. Li, and M.L. Thakur. Peptide Res. 9, 144
(1996); (b) J.K. Amartey. Nucl. Med. Biol. 20, 539 (1993).
13. A.N. Whelan, J. Elaridi, M. Harte, S.V. Smith, W.R. Jackson,
and A.J. Robinson. Tetrahedron Lett. 45, 9545 (2004).
14. S.T. Nguyen, L.K. Johnson, R.H. Grubbs, and J.W. Ziller. J.
Am. Chem. Soc. 114, 9858 (1992).
15. (a) H. Kessler and N. Schmiedeberg. Org. Lett. 4, 59 (2002);
(b) J.F. Reichwein, C. Versuluis, and R.M.J. Liskamp. J. Org.
Chem. 65, 6187 (2000); (c) T.D. Clark and M.R. Ghadiri. J.
Am. Chem Soc. 117, 12 364 (1995); (d) S.J. Miller and R.H.
Grubbs. J. Am. Chem. Soc. 117, 5855 (1995); (e) E.N.
Prabhakaran, V. Rajesh, S. Dubey, and J. Iqbal. Tetrahedron
Lett. 42, 339 (2001); ( f ) H.E. Blackwell, J.D. Sadowsky, R.J.
Howard, J.N. Samson, J.A. Chao, W.E. Steinmetz, D.J.
O’Leary, and R.H. Grubbs. J. Org. Chem. 66, 5291 (2001).
16. J.L. Stymiest, B.F. Mitchell, S. Wong, and J.C. Vederas. Org.
Lett. 5, 47 (2003).
The peptide was purified using preparative reverse-phase
HPLC (20%–100% aqueous acetonitrile with 0.1% TFA
over 2 h, 10 mL/min). Individual fractions were collected,
lyophilized, and analysed by analytical HPLC, NMR, and
1
mass spectral analysis (Table 4). H NMR data for dicarba
octreotide 1b, unsaturated dicarba octreotide 9, and dicarba
lanreotide 2b are reported in Tables 1–3.
Acknowledgements
The authors would like to acknowledge funding from an
Australian Postgraduate Award (awarded to ANW), as well
as CSIRO and ANSIE grants. Further thanks go to Noel Hart
and Stuart Littler for assistance in purification of the pep-
tides.
17. E. Teoh, E.M. Campi, W.R. Jackson, and A.J. Robinson.
Chem. Commun. 978 (2002).
18. H.P. Hsieh, Y.T. Wu, S.T. Chen, and K.T. Wang. Bioorg. Med.
Chem. 7, 1797 (1999).
References
19. Intolerance of catalysts to basic functionality has been previ-
ously reported. (a) S. Kotha, N. Sreenivasachary, K.
Mohanraja, and S. Durani. Bioorg. Med. Chem. Lett. 11, 1421
(2001); (b) R.H. Grubbs and S. Chang. Tetrahedron, 54, 4413
(1998); (c) T.M. Trnka and R.H. Grubbs. Acc. Chem. Res. 34,
18 (2001); (d) M.S. Sanford, J.A. Love, and R.H. Grubbs. J.
Am. Chem. Soc. 123, 6543 (2003).
20. M.R. Buchmeiser. Chem. Rev. 100, 1565 (2000).
21. R. Santini, M.C. Griffith, and M. Qi. Tetrahedron Lett. 39,
8951 (1998). Incompatible resin–solvent pairing can lead to
poor reaction site availability and diminished reaction rates.
Rink amide resin swells poorly in methanol, but exhibits high
swell in chlorinated solvents.
22. The unit cell of octreotide reveals the flexibility of the peptide
backbone and contains three individual molecules of the pep-
tide. Only one molecule (Molecule II) possesses the rotomer
conformation believed to be associated with biological activity.
This molecule was modelled using Insight II with the Discover
Minimization Module [computer program]. Vol. 2002.
Accelerys, San Diego, Calif. 1996.
1. K. Shin-ya, Y. Masuoka, A. Nagai, K. Furihata, K. Nagai, K.
Suzuki, Y. Hayakawa, and Y. Seto. Tetrahedron Lett. 42, 41
(2001).
2. A. Yurek-George, F. Habens, M. Brimmell, G. Packham, and
A. Ganesan. J. Am. Chem. Soc. 126, 1030 (2004).
3. R. Furumai, A. Matsuyama, N. Kobashi, K.-H. Lee, N.
Nishiyama, H. Nakajima, A. Tanaka, Y. Komatsu, N. Nishino,
M. Yoshida, and S. Horinouchi. Cancer Res. 62, 4916 (2002).
4. P. Grieco, P. Campiglia, I. Gomez-Monterrey, T. Lama, and E.
Novellino. Synlett, 14, 2216 (2003), and refs. cited therein.
5. (a) P. Campiglia, I. Gomez-Monterrey, L. Longobardo, T.
Lama, E. Novellino, and P. Grieco. Tetrahedron Lett. 45, 1453
(2004), and refs. cited therein; (b) X. Zhu and R.R. Schmidt.
Eur. J. Org. Chem. 4069 (2003), and refs. cited therein.
6. (a) R.F. Nutt, R.G. Strachan, D.F. Veber, and F.W.J. Holly. J.
Org. Chem. 45, 3078 (1980); (b) K. Undheim, J. Efskind, and
G. Beate Hoven. Pure Appl. Chem. 75, 279 (2003).
7. W. Bauer, U. Briner, W. Doepfner, R. Haller, R. Huguenin, P.
Marbach, T.J. Petcher, and J. Pless. J. Life Sci. 31, 1133 (1982).
8. D.A. Pearson, J. Lister-James, W.J. McBride, D.M. Wilson,
L.J. Martel, E.R. Civitello, J.E. Taylor, B.R. Moyer, and R.T.
Dean. J. Med. Chem. 39, 1361 (1996).
23. E. Pohl, A. Heine, and G.M. Sheldrick. Acta Crystallogr. Sect.
D, D51, 48 (1995).
24. K. Wüthrich. NMR of proteins and nucleic acids. John Wiley
and Sons, New York. 1986.
9. (a) E.P. Krenning, D.J. Kwekkeboom, W.H. Bakker, W.A.P.
Breeman, P.M. Kooji, H.Y. Oei, M. van Hagen, P.T.E.
Postema, M. de Jong, J.C. Reubi, T.J. Visser, A.E.M. Reijs,
© 2005 NRC Canada