C O M M U N I C A T I O N S
Table 3. Oxidation of Potassium Organotrifluoroboratesa
Scheme 1
means. Most importantly, it allows practitioners to expand the role
of organoborons in their synthetic planning, thus changing in a
fundamental manner strategic retrosynthetic analyses involving
boron-based cross-coupling.
Acknowledgment. The authors wish to thank NIH (GM 35249),
Amgen, Merck Research Laboratories, and Johnson Matthey for
their generous support of our program. Dr. Rakesh Kohli is
acknowledged for obtaining HRMS data.
Supporting Information Available: Experimental procedures,
compound characterization data, and NMR spectra for all new
compounds. This material is available free of charge via the Internet
a Conditions: 3 equiv IBX, acetone, reflux, 2 h. b Product isolated in
low yield.
References
(1) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(2) Zaidlewicz, M.; Brown, H. C. Organic Syntheses Via Boranes; Aldrich
Chemical Co.: Milwaukee, WI, 2002.
(3) (a) Suzuki, A.; Brown, H. C. Organic Syntheses Via Boranes: Volume 3
Suzuki Coupling: Aldrich Chemical Co.: Milwaukee, WI, 2003. (b)
Miyaura, N. Top. Curr. Chem. 2002, 219, 11. (c) Miyaura, N.; Suzuki,
A. Chem. ReV. 1995, 95, 2457.
(4) Fagnou, K.; Lautens, M. Chem. ReV. 2003, 103, 169.
(5) For reviews of organotrifluoroborates, see: (a) Molander, G. A.; Figueroa,
R. Aldrichimica Acta 2005, 38, 49. (b) Darses, S.; Genet, J.-P. Eur. J.
Org. Chem. 2003, 4313.
Because of its simplicity in execution, the TPAP/NMO system
was to chosen to oxidize a variety of TBA organotrifluoroborates
containing primary and secondary alcohols. The use of activated,
powdered 4 Å molecular sieves was necessary to promote oxidation.
Alkyl, alkenyl, and aryl trifluoroborates were tolerated in this
process, and no cleavage of the carbon-boron bond was observed
(Table 2).
The use of IBX is often limited to DMSO, or DMSO/THF
solvent mixtures. Recently, Finney and co-workers demonstrated
that IBX can be used in several solvents at elevated temperatures.22
We found that the potassium organotrifluoroborates could be
oxidized using 3 equiv of IBX in refluxing acetone. In this case,
the crystallinity of the potassium organotrifluoroborate salts proved
to be beneficial to the workup. Simple filtration of the IBX
byproducts gave a filtrate from which the oxidized products were
crystallized. Potassium aryltrifluoroborates containing secondary
alcohols were effectively oxidized by this method (Table 3). Primary
alcohols are not suitable for this oxidation because the resulting
aldehydes require methanol for dissolution, which also dissolves
the IBX byproducts and impedes crystallization of the organotri-
fluoroborate.
The use of conditions developed previously in our group to
couple these oxidized products was then explored.23 TBA trifluo-
roborate 4a, formed from the secondary alcohol 3a, was coupled
to 4-bromobenzonitrile to provide 5 in 80% yield over two steps
after column chromatography (Scheme 1).
In conclusion, we have synthesized potassium and TBA orga-
notrifluoroborates containing hydroxyl groups and shown that they
can be oxidized under several common oxidation conditions. This
method allows access to ketone- and aldehyde-containing orga-
noboron compounds, a class that can be difficult to access by other
(6) Batey, R. A.; Thadani, A. N.; Smil, D. V. Org. Lett. 1999, 1, 1683.
(7) Molander, G. A.; Dehmel, F. J. Am. Chem. Soc. 2004, 126, 10313.
(8) For other examples of oxidations of organoboranes containing alcohols,
see: (a) Matteson, D. S.; Kandil, A. A.; Soundararajan, R. J. Am. Chem.
Soc. 1990, 112, 3964. (b) Rasset-Deloge, C.; Vaultier, M. Bull. Soc. Chim.
Fr. 1994, 131, 919. (c) Jehanno, E.; Vaultier, M. Tetrahedron Lett. 1995,
36, 4439. (d) Matteson, D. S.; Man, H.-W.; Ho, O. C. J. Am. Chem. Soc.
1996, 118, 4560. (e) Matteson, D. S. J. Organomet. Chem. 1999, 581,
51. (f) Jin, B.; Liu, Q.; Sulikowski, G. A. Tetrahedron 2005, 61, 401. (g)
Barfoot, C. W.; Harvey, J. E.; Kenworthy, M. N.; Kilburn, J. P.; Ahmed,
M.; Taylor, R. J. K. Tetrahedron 2005, 61, 3403.
(9) Molander, G. A.; Ribagorda, M. J. Am. Chem. Soc. 2003, 125, 11148.
(10) Molander, G. A.; Figueroa, R. Org. Lett. 2006, 8, 75.
(11) Oxidizing and Reducing Agents. In Handbook of Reagents for Organic
Synthesis; Burke, S. D., Danheiser, R. L., Eds.; Wiley: Chichester, U.K.,
1999.
(12) (a) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1971, 93, 1816. (b)
Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1972, 94, 4370.
(13) Knights, E. F.; Brown, H. C. J. Am. Chem. Soc. 1968, 90, 5281.
(14) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57, 3482.
(15) Batey, R. A.; Quach, T. D. Tetrahedron Lett. 2001, 42, 9099.
(16) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. Chem.
Commun. 1987, 1625.
(17) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651.
(18) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(19) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52,
2559.
(20) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J.
Org. Chem. 1997, 62, 6974.
(21) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019.
(22) More, J. D.; Finney, N. S. Org. Lett. 2002, 4, 3001.
(23) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68, 4302.
JA062974I
9
J. AM. CHEM. SOC. VOL. 128, NO. 30, 2006 9635