C O M M U N I C A T I O N S
Table 2. Tandem Asymmetric Vinylation of Aldehydes:
Diastereoselective Cyclopropanation (Scheme 1B)
genic centers have been presented. Beginning with achiral starting
materials, initial enantioselective C-C bond formation is followed
by diastereoselective cyclopropanation. The advantages of these
methods are that (1) they circumvent the need to prepare and isolate
either racemic or enantioenriched allylic alcohols, (2) the initial
asymmetric C-C bond-forming step can be optimized by judicious
choice of catalyst,27 and (3) the enantio- and diastereoselectivities
are very high for almost all substrate classes. Using our one-pot
method, highly functionalized cyclopropanes are now easily ac-
cessible. We anticipate that the cyclopropyl alcohols outlined here
will find widespread utility in enantioselective synthesis.28
a Determined by crude 1H NMR analysis b Stereochemistry assigned by X-ray
analysis. See the Supporting Information.
Acknowledgment. This work was supported by the NIH
(GM58101) and the NSF (CHE-0315913). We are grateful to Prof.
Andre´ B. Charette for disclosure of results prior to publication (see
accompanying paper).
Table 3. Tandem Asymmetric Addition/Iodocyclopropanation
Supporting Information Available: Procedures and full charac-
terization, stereochemical assignments, and X-ray determinations of new
compounds (PDF). This material is available free of charge via the
References
(1) Pietruszka, J. Chem. ReV. 2003, 103, 1051-1070.
(2) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. ReV. 2003, 103,
1625-1648.
(3) Donaldson, W. A. Tetrahedron 2001, 57, 8589-8627.
(4) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. ReV. 2003,
103, 977-1050.
(5) Charette, A. B.; Marcoux, J. F. Synlett 1995, 1197-1207.
(6) Doyle, M. P.; McKervey, A. M.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; Wiley and Sons: New York,
1998.
(7) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256-4264.
(8) Long, J.; Yuan, Y.; Shi, Y. J. Am. Chem. Soc. 2003, 125, 13632-13633.
(9) Long, J.; Du, H.; Li, K.; Shi, Y. Tetrahedron Lett. 2005, 46, 2737-2740.
(10) Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123,
12168-12175.
1
a Determined by H NMR of the crude product. b Structure determined
by X-ray analysis.
(11) Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. Tetrahedron Lett.
1992, 33, 2575-2578.
has been used in the synthesis of iodo-substituted cyclopropanes22
and the generation of dizinc carbenoids.23,24 Initially, we employed
the carbenoid EtZnCHI2, but the reactions were slow and stalled
at about 50% conversion. It is known that electron-withdrawing
groups on zinc carbenoids of the type XZnCH2I (X ) O2CCF3,25
OAr26) increase the reactivity. Thus, the intermediate allylic alkox-
ide formed upon alkyl addition to an enal was treated with a new
reagent, CF3CH2OZnCHI2. After standard workup, iodocyclopropyl
alcohols were isolated in 56-80% yields with enantiomeric excesses
g89%. The high diastereomeric ratio observed in the generation
of the final three stereocenters attests to the ability of zinc to control
stereoselectivity in this reaction. We anticipate that the iodides can
be selectively substituted in C-C bond-forming reactions.
(12) Denmark, S. E.; O’Connor, S. P. J. Org. Chem. 1997, 62, 3390-3401.
(13) Nugent, W. A. J. Chem. Soc., Chem. Commun. 1999, 1369-1370.
(14) Lorenz, J. C.; Long, J.; Yang, Z.; Xue, S.; Xie, Y.; Shi, Y. J. Org. Chem.
2004, 69, 327-334.
(15) Oppolzer, W.; Radinov, R. N. HelV. Chim. Acta 1992, 75, 170-173.
(16) Ratier, M.; Castaing, M.; Godet, J.-Y.; Pereyre, M. J. J. Chem. Res. (M)
1978, 2309.
(17) Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966-2967.
(18) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125,
761-768.
(19) Charette, A. B.; Giroux, A. J. Org. Chem. 1996, 61, 8718-8719.
(20) Martin, S. F.; Dwyer, M. P. Tetrahedron Lett. 1998, 39, 1521-1524.
(21) Piers, E.; Coish, P. D. Synthesis 1995, 47-55.
(22) Miyano, S.; Hashimoto, H. Bull. Chem. Soc. Jpn. 1974, 47, 1500-1503.
(23) Charette, A. B.; Gagnon, A.; Fournier, J. F. J. Am. Chem. Soc. 2002,
124, 386-387.
(24) Fournier, J. F.; Charette, A. B. Eur. J. Org. Chem. 2004, 1401-1404.
(25) Yang, Z. Q.; Lorenz, J. C.; Shi, Y. Tetrahedron Lett. 1998, 39, 8621-
8624.
(26) Charette, A. B.; Francoeur, S.; Martel, J.; Wilb, N. Angew. Chem., Int.
Ed. 2000, 39, 4539-4542.
(27) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757-824.
(28) For a highly diastereoselective synthesis of cyclopropylzinc intermediates
and their reactions with electrophiles see the accompanying paper:
Fournier, J.-F.; Mathieu, S.; Charette, A. B. J. Am. Chem. Soc. 2005, 127,
13140-13141.
In summary, three expedient methods for the synthesis of
cyclopropyl and iodocyclopropyl alcohols with up to four stereo-
JA0539239
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13139