Y.-C. Jeong et al. / Tetrahedron Letters 45 (2004) 9249–9252
9251
however, with an inferior enantioselectivity (72% ee,
entry 3). As shown in entry 13, the ligand without a chiral
center at the imine subunit such as 4d did not give any
enantioselectivity in the reaction. Thus, the configura-
tion of sulfoxide must be greatly affected by the config-
uration of aminoalcohol used in the ligand synthesis. To
improve the enantioselectivity, a sterically hindered sub-
with the benzyl group of incoming aryl benzyl sulfides
under the catalytic condition to give the high face selec-
tion in the sulfide oxidation.
In summary, we were able to optimize the Berkesselꢀs
catalytic system for the asymmetric oxidation of alkyl
aryl sulfides. The Schiff base ligand 4a showed an excel-
lent enantioselectivity reaching 99% ee in the oxidation
of benzyl aryl sulfide.
stituent R such as tert-butyldiphenylsilyloxy group was
2
introduced (ligand 4c). However, the selectivity obtained
with 4c was low (entry 5) and even worse than the enan-
tioselectivity obtained with 4b (entry 4) containing ace-
tyl group at R , indicating that a proper steric
2
Acknowledgements
hindrance has to be introduced at R . Thus, ligand 4a
2
showed the best enantioselectivity in the oxidation of
thioanisole among the ligands that we prepared.
This work was supported by the Basic Research Pro-
gram of the Korea Science & Engineering Foundation
(
R01–2003–000–10187–0).
Oxidations of various alkyl substituted-aryl sulfides
were also examined with ligand 4a (entry 6–11). Most
of the reactions showed good enantioselectivities reach-
ing 87% ee (entry 7) except ortho-substituted substrates
References and notes
. (a) Carreno, M. C. Chem. Rev. 1995, 95, 1717; (b)
Colobert, F.; Tito, A.; Khiar, N.; Denni, D.; Media, M.
A.; Martin-Lomas, M.; Ruano, J.-L.; Solladie, G. J. Org.
Chem. 1998, 63, 8918; (c) Carreno, M. C.; Ribagorda, M.;
Posner, G. H. Angew. Chem., Int. Ed. 2002, 41, 2753; (d)
Marino, J. P.; Mcclure, M. S.; Holub, D. P.; Comasseto, J.
V.; Tucci, F. C. J. Am. Chem. Soc. 2002, 124, 1664.
. (a) Tanaka, M.; Yamazaki, H.; Hakusui, H.; Nakamichi,
N.; Sekino, H. Chirality 1997, 9, 17; (b) Hutton, C. A.;
White, J. M. Tetrahedron Lett. 1997, 38, 1643; (c) Holland,
H. L.; Brown, F. M. Tetrahedron: Asymmetry 1998, 9, 535;
(
entries 10–12). Sulfones expecting from an oxidation
1
2
of the corresponding sulfoxides were formed only to a
minor extent (less than 3%). Interestingly, (S,S)-4a was
shown to be the better catalyst compared to (R,S)-4a
in the oxidation of methyl o-bromophenyl sulfide (en-
tries 10 and 11). The result contrasts with the oxidation
of thioanisole (entries 2 and 3).
We also examined the oxidation of benzyl 4-substituted
phenyl sulfides with ligand 4a (Table 2). Surprisingly,
the reaction proceeded with an excellent enantioselectiv-
ity. In the sulfoxidation of benzyl phenyl sulfide, (S)-
benzyl phenyl sulfoxide was obtained in 99% ee (entry
(
d) Cotton, H.; Elebring, T.; Larsson, M.; Li, L.;
Sorensen, H.; von Unge, S. Tetrahedron: Asymmetry
2000, 11, 3819.
3. Ahn, K.-H.; Kim, H.; Kim, J. R.; Jeong, S. C.; Kang, T.
1
). This is the best record that has been observed in
S.; Shin, H. T.; Lim, G. J. Bull. Korean Chem. Soc. 2002,
2
the sulfoxidation of benzyl phenyl sulfide with a
vanadium catalyst. Further, in the oxidation of benzyl
3, 626.
4
. (a) Pitchen, P.; Deshmukh, M. N.; Duach, E.; Kagan, H.
B. J. Am. Chem. Soc. 1984, 106, 8188; (b) Di Furia, F.;
Modena, G.; Seraglia, R. Synthesis 1984, 325; (c) Kagan,
H. B.; Rebiere, F. Synlett 1990, 643; (d) Komatsu, N.;
Nishibayashi, Y.; Sugita, T.; Uemura, S. Tetrahedron Lett.
4
oxide, a versatile intermediate for the syntheses of vari-
-bromophenyl sulfide, (S)-benzyl 4-bromophenyl sulf-
4
l
ous chiral sulfoxides using a substitution reaction was
also obtained in 98% ee (entry 3). These results demon-
strate the potential of our catalytic system. It is difficult
to provide a reasonable explanation for the high enan-
tioselectivities observed with our catalytic system at
the present stage. However, the low enantioselectivity
obtained with (R,S)-4b (entry 5) suggests that the piva-
loyl group of (R,S)-4a-vanadium catalyst may interact
1
992, 33, 5391; (e) Komatsu, N.; Hashizume, M.; Sugita,
T.; Uemura, S. J. Org. Chem. 1993, 58, 4529; (f) Brunel,
J.-M.; Luukas, T. O.; Kagan, H. B. Tetrahedron: Asym-
metry 1998, 9, 1941; (g) Donnoli, M. I.; Superchi, S.;
Rosini, C. J. Org. Chem. 1998, 63, 9392; (h) Bonchio, M.;
Licini, G.; Modena, G.; Bortolini, O.; Moro, S.; Nugent,
W. A. J. Am. Chem. Soc. 1999, 121, 6258; (i) Saito, B.;
Katsuki, T. Tetrahedron Lett. 2001, 42, 3873; (j) Saito, B.;
Katsuki, T. Tetrahedron Lett. 2001, 42, 8333; (k) Massa,
A.; Siniscalchi, F. R.; Bugatti, V.; Lattanzi, A.; Scettri, A.
Tetrahedron: Asymmetry 2002, 13, 1277; (l) Capozzi, M.
A. M.; Cardellicchio, C.; Naso, F.; Rosito, V. J. Org.
Chem. 2002, 67, 7289; (m) Tanaka, T.; Saito, B.; Katsuki,
T. Tetrahedron Lett. 2002, 43, 3259.
Table 2. Asymmetric sulfoxidation of aryl benzyl sulfide
O-
S
S
Ph VO(acac)2 (2 mol%)/ Ligand (3 mol%)
+
Ar
Ph
o
Ar
H2O2 (1.1 eq.), CH2Cl2, 0 C
a
Yield (%) Ee (%) Config.
b
c
Entry Ligand
Ar
5. (a) Palucki, M.; Hanson, P.; Jacobsen, E. N. Tetrahedron
Lett. 1992, 33, 7111; (b) Noda, K.; Hosoya, N.; Irie, R.;
Yamashita, Y.; Katsuki, T. Tetrahedron 1994, 50, 9609; (c)
Chellamani, A.; Kylanthaipandi, P.; Rajagopal, S. J. Org.
Chem. 1999, 64, 2232.
1
2
3
4
5
(R,S)-4a Ph
78
90
85
81
67
99
94
98
67
69
S
S
S
S
S
6 4
(R,S)-4a p-MeC H
6 4
(R,S)-4a p-BrC H
(R,S)-4a p-MeOC
6 4
H
6
. (a) Legros, J.; Bolm, C. Angew. Chem., Int. Ed. 2003, 42,
487; (b) Legros, J.; Bolm, C. Angew. Chem., Int. Ed. 2004,
43, 4225.
(R,S)-4b Ph
5
a
Isolated yield.
Determined by HPLC using Daicel Chiralcel OJ column.
b
c
7. (a) Nakajima, K.; Kojima, K.; Fujita, J. J. Chem. Lett.
1986, 1483; (b) Bolm, C.; Binewald, F. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2640; (c) Cogan, A. D.; Liu, G.;
Absolute configuration of the major product was determined by
comparison of its sign of optical rotation with literature data.