Edge Article
Chemical Science
¨
B. Cao, X.-Y. Chang, T. You and C.-M. Che, Angew. Chem., Int. 28 E. M. D'Amato, J. Borgel and T. Ritter, Chem. Sci., 2019, 10,
Ed., 2018, 57, 11947–11951; (d) J. Qin, Z. Zhou, T. Cui, 2424–2428.
M. Hemming and E. Meggers, Chem. Sci., 2019, 10, 3202– 29 A related two-step mechanism was reported for Ir-catalysed
3207; (e) H. Noda, Y. Asada and M. Shibasaki, Org. Lett.,
2020, 22, 8769–8773; (f) Y. Dong, R. M. Clarke, G. J. Porter
lactamization. Y. Hwang, Y. Park, Y. B. Kim, D. Kim and
S. Chang, Angew. Chem., Int. Ed., 2018, 57, 13565–13569.
and T. A. Betley, J. Am. Chem. Soc., 2020, 142, 10996–11005. 30 Y. Park, Y. Kim and S. Chang, Chem. Rev., 2017, 117, 9247–
15 (a) J.-S. Yu, H. Noda and M. Shibasaki, Angew. Chem., Int. Ed., 9301.
2018, 57, 818–822; (b) J.-S. Yu, H. Noda and M. Shibasaki, 31 J. J. Farndon, X. Ma and J. F. Bower, J. Am. Chem. Soc., 2017,
Chem.–Eur. J., 2018, 24, 15796–15800; (c) F. Amemiya, 139, 14005–14008.
H. Noda and M. Shibasaki, Chem. Pharm. Bull., 2019, 67, 32 Although DFT and CASSCF sometimes predict different
1046–1049.
ground-state spin multiplicities owing to
a
large
16 For reviews on the asymmetric synthesis of heterocycles, see:
contribution from the biradical character of the
wavefunction, DFT has been proven to be useful in
providing, at least qualitatively, a good understanding of
copper nitrenes. L. Maestre, W. M. C. Sameera,
`
(a) J. Annibaletto, S. Oudeyer, V. Levacher and J.-F. Briere,
Synthesis, 2017, 49, 2117–2128; (b) A. Macchia, A. Eitzinger,
`
J.-F. Briere, M. Waser and A. Massa, Synthesis, 2021, 53,
´
´
107–122.
M. M. Dıaz-Requejo, F. Maseras and P. J. Perez, J. Am.
17 M. Espinosa, H. Noda and M. Shibasaki, Org. Lett., 2019, 21,
9296–9299.
18 J.-S. Yu, M. Espinosa, H. Noda and M. Shibasaki, J. Am.
Chem. Soc., 2019, 141, 10530–10537.
Chem. Soc., 2013, 135, 1338–1348.
33 K. M. Carsch, I. M. DiMucci, D. A. Iovan, A. Li, S. L. Zheng,
C. J. Titus, S. J. Lee, K. D. Irwin, D. Nordlund,
K. M. Lancaster and T. A. Betley, Science, 2019, 365, 1138–
1143.
19 L. Chen, P. T. Wilder, B. Drennen, J. Tran, B. M. Roth,
K. Chesko, P. Shapiro and S. Fletcher, Org. Biomol. Chem., 34 In ref. 21b, Falck and coworkers proposed that a protonated
2016, 14, 5505–5510. rhodium nitrene is responsible for the electrophilic arene
amination. In our calculations, reaction pathway
´
20 (a) V. Sridharan, P. A. Suryavanshi and J. C. Menendez,
Chem. Rev., 2011, 111, 7157–7259; (b) I. Muthukrishnan
and V. Sridharan, Chem. Rev., 2019, 119, 5057–5191.
21 (a) J. L. Jat, M. P. Paudyal, H. Gao, Q. L. Xu, M. Yousufuddin,
D. Devarajan, D. H. Ess, L. Kurti and J. R. Falck, Science,
2014, 343, 61–65; (b) M. P. Paudyal, A. M. Adebesin,
a
involving a similar protonated copper nitrene lies at
a higher free energy, possibly due to the pKa difference
between sulfonic acids and carboxylic acids. Hence, we
propose, instead, a non-protonated nitrene as an active
intermediate in the current transformation.
¨
S. R. Burt, D. H. Ess, Z. Ma, L. Kurti and J. R. Falck, 35 (a) Y. M. Badiei, A. Krishnaswamy, M. M. Melzer and
Science, 2016, 353, 1144–1147.
T. H. Warren, J. Am. Chem. Soc., 2006, 128, 15056–15057;
(b) Y. M. Badiei, A. Dinescu, X. Dai, R. M. Palomino,
F. W. Heinemann, T. R. Cundari and T. H. Warren, Angew.
Chem., Int. Ed., 2008, 47, 9961–9964; (c) M. J. B. Aguila,
Y. M. Badiei and T. H. Warren, J. Am. Chem. Soc., 2013,
135, 9399–9406; (d) A. G. Bakhoda, Q. Jiang, J. A. Bertke,
T. R. Cundari and T. H. Warren, Angew. Chem., Int. Ed.,
2017, 56, 6426–6430; (e) K. M. Carsch, J. T. Lukens,
I. M. DiMucci, D. A. Iovan, S. L. Zheng, K. M. Lancaster
and T. A. Betley, J. Am. Chem. Soc., 2020, 142, 2264–2276.
22 For a related copper(II)-catalysed process, see: S. Munnuri,
R. R. Anugu and J. R. Falck, Org. Lett., 2019, 21, 1926–1929.
23 H. Kwart and A. A. Khan, J. Am. Chem. Soc., 1967, 89, 1951–
1953.
24 For an early example to demonstrate an advantage of copper
over rhodium in asymmetric C–H insertion, see: H.-J. Lim
and G. A. Sulikowski, J. Org. Chem., 1995, 60, 2326–2327.
25 For the seminal report on the use of bis(oxazoline) ligands in
copper-catalysed aziridination, see: D. A. Evans, M. M. Faul,
M. T. Bilodeau, B. A. Anderson and D. M. Barnes, J. Am. 36 For a related oxo-dicopper species, see: M. H. Groothaert,
Chem. Soc., 1993, 115, 5328–5329.
P. J. Smeets, B. F. Sels, P. A. Jacobs and R. A. Schoonheydt,
26 (a) M. Kitamura, S. Okada, S. Suga and R. Noyori, J. Am.
J. Am. Chem. Soc., 2005, 127, 1394–1395.
Chem. Soc., 1989, 111, 4028–4036; (b) D. A. Evans, 37 The MECP was located by the EasyMECP (DOI: 10.5281/
M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos,
B. T. Connell and R. J. Staples, J. Am. Chem. Soc., 1999,
121, 669–685.
zenodo.4293421), a python wrapper around the Fortran
code described in the following literature. J. N. Harvey,
M. Aschi, H. Schwarz and W. Koch, Theor. Chem. Acc.,
1998, 99, 95–99.
27 J. Liu, K. Wu, T. Shen, Y. Liang, M. Zou, Y. Zhu, X. Li, X. Li
and N. Jiao, Chem.–Eur. J., 2017, 23, 563–567.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Chem. Sci.