August 1998
SYNLETT
905
(3) a) M. B. Isaac, T. H. Chan, Tetrahedron Lett., 1995, 36, 8957-
8960; b) S.-C. H. Diana, K.-Y. Sim, T.-P. Loh, Synlett, 1996, 263-
264; c) T. H. Chan, M. B. Isaac, Pure & Appl. Chem., 1996, 68,
919-924.
through open transition states for which the syn product is
expected.
(11) Diastereomeric identities of 2a, b and c were assigned by analysis
3
of the J HH benzylic-allylic coupling constants in CDCl3 solution
(4) X.-R. Li, T.-P. Loh, Tetrahedron: Asymmetry, 1996, 7, 1535-1538.
(syn, 5.5, 5.7 and 5.4 Hz; anti, 7.9, 8.1 and 7.7 Hz respectively). 2-
Methyl-1-phenylbut-3-en-1-ol
2a
and
2-methyl-1-(p-
(5) S. Araki, H. Ito, N. Katsumara, Y. Butsugan, J. Organometal.
Chem., 1989, 369, 291-296.
methoxyphenyl)but-3-en-1-ol 2b are known compounds (2a, U.
Schöllkopf, K. Fellenberger, M. Rizk, Liebigs Ann. Chem., 1970,
734, 106-115; 2b, J. P. Takahara, Y. Masuyama, Y. Kurusu, J. Am.
Chem. Soc., 1992, 114, 2577-2586). 2-Methyl-1-(β-naphthyl)but-
3-en-1-ol 2c: 1H NMR (300 MHz) syn-2c: 7.68-7.82 (m, 4H,
arom. H); 7.35-7.47 (m, 4H, H arom.); 5.75 (ddd, 3J = 17.7, 10.7,
(6) S. Araki, H. Ito, Y. Butsugan, J. Org. Chem., 1988, 53, 1831-33.
(7) S. M. Capps, G. C. Lloyd-Jones, M. Murray, T. M. Peakman, K. E.
Walsh; Tetrahedron Lett., 1998 39, 2853-2856; H. A. F. Höppe, G.
C. Lloyd-Jones, M. Murray, T. M. Peakman, K. E. Walsh; Angew.
Chem., Int. Ed. 1998, 110, 1545.
7.2, 1H, CH=); 5.02 (ddd, 2J = 1.1, J = 17.7, 4J = 1.1, 1H, =CH2
3
trans), 5.01 (ddd, 2J = 1.1, 3J = 10.7, 4J = 1.1, 1H, =CH2 cis); 4.69
(d, 3J = 5.4, 1H, CH(OH)), 2.63 (ddddq, 3J = 7.2, 6.8, 5.4, 4J = 1.1,
1.1, 1H, CH(Me)), 2.27 (bs, 1H, OH), 1.00 (d, 3J = 6.8, 3H, CH3);
anti-2c: 7.68-7.82 (m, 4H, arom. H); 7.35-7.47 (m, 4H, H arom.);
5.77 (ddd, 3J = 17.1, 11.7, 8.1, 1H, CH=); 5.19 (ddd, 2J = 1.1, 3J =
17.1, 4J = 1.9, 1H, =CH2 trans), 5.16 (ddd, 2J = 1.1, 3J = 11.7, 4J =
1.1, 1H, =CH2 cis); 4.47 (d, 3J = 7.7, 1H, CH(OH)), 2.55 (ddddq,
3J = 8.1, 7.7, 6.8, 4J = 1.9, 1.1, 1H, CH(Me)), 2.40 (bs, 1H, OH),
(8) M. T. Reetz, H. Haning, J. Organometal. Chem., 1998, 541, 117-
120. For tetraorganoindates see: S. Araki, S.-J. Jin, Y. Butsugan, J.
Chem. Soc., Perkin Trans. 1, 1995, 549-552.
(9) We are currently trying to ascertain what the decomposition
products are. We note that the major rotamer of the benzyl-allylic
C-C bond in the anti intermediate is likely to be that in which the
internal alkenyl carbon is antiperiplanar to the C-OIn bond -
decomposition may involve cyclopropyl type intermediates - see
ref 7. Also excess crotyl bromide and indium is necessary. As
noted, the rate of decomposition of syn-1a may be kinetically
linked to anti-1a. A much more detailed kinetic investigation is in
progress and will be reported in full in due course.
0.86 (d, J = 6.8, 3H, CH3); 13C NMR (75 MHz) syn-2c 140.5
3
(CH=); 140.0 (C(2)arom.); 133.0, 132.8 (2 x C-arom.) ; 127.9,
127.7, 127.6, 125.9, 125.2, 124.6 (7 x CH-arom.); 115.5 (=CH2);
77.4 (C(OH); 44.5 (CH(Me)); 14.0 (CH3); anti-2c; 140.5 (CH=);
139.8 (C(2)-arom.), 133.1, 133.0 (2 x C-arom.) ; 128.0, 127.8,
127.6, 126.0, 125.8, 125.7, 124.6 (7 x CH-arom.); 116.8 (=CH2);
77.9 (C(OH); 46.0 (CH(Me)); 16.5 (CH3); IR(NaCl) 3415 (νOH);
(10) The Z-crotyl anion is thermodynamically favoured over the E-
-1
form (∆GZ/E = 4 kcal mol , M. Schlosser, J. Hartmann, J. Am.
Chem. Soc., 1976, 98, 4674-4676). However, due to low
polarisation of the C-In bond E-crotylindium is expected to be
favoured and would afford anti-crotylation products on reaction
with arylaldehydes via Zimmermann-Traxler type transition
states. We suggest that the crotylations discussed here occur
+
1270 (νC-O) cm-1; MS(EI) 212 (M ,1); 194 (2); 179 (11); 157 (90);
129 (100); C15H16O, 212.29, requires C, 84.87; H, 7.60 %; found
C, 84.50; H 7.94 %.