Page 3 of 3
ChemComm
DOI: 10.1039/C3CC49859J
60
Lett. 2011, 13, 3077. (e) H. Guo, C.ꢀG. Dong, D.ꢀS. Kim, D. Urabe, J.
Wang, J. T. Kim, X. Liu, T. Sasaki and Y. Kishi, J. Am. Chem. Soc.
2009, 131, 15387. (f) A. Berkessel, D. Menche, C. A. Sklorz, M.
Schroder, I. Paterson, Angew. Chem., Int. Ed. 2003, 42, 1032.
For selected examples of asymmetric Barbier reactions, see: (a) T. D.
Haddad, L. C. Hirayama, and B. Singaram J. Org. Chem. 2010, 75,
642. (b) L. C. Hirayama, S. Gamsey, D. Knueppel, D. Steiner, D.
Torre and K.; Singaram, B. Tetrahedron Lett. 2005, 46, 2315.
Nonꢀasymmetric coupling of allylic alcohol/thioether with carbonyl
compounds, using Rh/B: (a) F. J. Williams, R. E. Grote and E. R.
Jarvo, Chem. Commun., 2012, 48, 1496. Co/Zn: (b) P. Gomes, C.
Gosmini and J. Périchon, Synthesis 2003, 1909. Feꢀelectrochemical
reduction: (c) M. Durandetti, C. Meignein and J. Périchon, J. Org.
Chem. 2003, 68, 3121. Fe/Mn: (d) M. Durandetti, and J. Périchon,
Tetrahedron Lett. 2006, 47, 6255. Tiꢀmediated modulated by Ni or
Pd: (e) A. G. Campaa, B. Bazdi, N. Fuentes, R. Robles, J. M. Cuerva,
J. E. Oltra, S. Porcel and A. M. Echavarren, Angew. Chem., Int. Ed.
2008, 47, 7515. Rh/CO: (f) M. Vasylyev and H. Alper, J. Org. Chem.
2010, 75, 2710. Ru/CO: (g) S. E. Denmark and S. T. Nguyen, Org.
Lett. 2009, 11, 781. Ti: (h) T. Takeda, M. Yamamoto, S. Yoshida
and M. Tsubouchi, Angew. Chem., Int. Ed. 2012, 51, 7263.
[Ir(cod)Cl]2/SnCl2: (i) S. Roy and M. Banerjee, J. Mol. Catal. A 2006,
246, 231.
For selected examples of Pdꢀcatalyzed nonꢀasymmetric carbonyl
allylation with allylic alcohols and acetates, Pd/Et2Zn: (a) A. Flahaut,
K. Toutah, P. Mangeney and S. Roland, Eur. J. Inorg. Chem. 2009,
5422. (b) M. Kimura, M. Shimizu, K. Shibata, M. Tazoe, Y. Tamaru,
Angew. Chem., Int. Ed. 2003, 42, 3392. Pd(OAc)2/Et3B: (c) M.
Kimura, T. Tomizawa, Y. Horino, S. Tanaka, and Y. Tamaru,
Tetrahedron Lett. 2000, 41, 3627. Pd/diboron via allyl–B: (d) N.
Selander, A. Kipke, S. Sebelius and K. Szabó, J. J. Am. Chem. Soc.
2007, 129, 13723.
For reviews of asymmetric umpolung reactions, see : (a) J. F. Bower,
I.–S. Kim, R. L. Patman and M. J. Krische, Angew. Chem., Int. Ed.
2009, 48, 34–46. (b) N. T. Patil and Y. Yamamoto,
Chemtracts 2004, 17, 600.
For examples, see: (a) I.ꢀS. Kim, M.ꢀY. Ngai and M. J. Krische, J.
Am. Chem. Soc. 2008, 130, 6340. (b) Kim, I. S.; MꢀY. Ngai and M. J.
Krische, J. Am. Chem. Soc. 2008, 130, 14891–14899. Irꢀ
allene/alcohol: (c) J. F. Bower, E. Skucas, R. L. Patman and M. J.
Krische, J. Am. Chem. Soc. 2007, 129, 15134.
Pdꢀcatalyzed asymmetric umpolung, Pd/Et2Zn: (a) G. Zanoni, S.
Gladiali, A. Marchetti, P. Piccinini, I. Tredici and G. Vidari, Angew.
Chem., Int. Ed. 2004, 43, 846. Pd/B: (b) S.ꢀF. Zhu, X.–C. Qiao, Y.–Z.
Zhang, L.–X. Wang, Q.–L. Zhou, Chem. Sci. 2011, 2, 1135. (c) S. F.
Zhu, Y. Yang, L.–X. Wang, B. Liu, and Q.–L. Zhou, Org. Lett. 2005,
7, 2333.
Nonꢀasymmetric carbonyl allylation with allyl–OR under Ni/InI: (a)
T. Hirashita, S. Kambe, H. Tsuji, H. Omori, and S. Araki, J. Org.
Chem. 2004, 69, 5054. Intramolecular coupling of allyl ether with
aldehyde: (b) D. Franco, K. Wenger, S. Antonczak, D. CabrolꢀBass,
E. Dunach, M. Rocamora, M. Gomez, and G. Muller, Chem.—Eur. J.
2002, 8, 664.
and ligand generated 1 in 90% yield (Table 4, entry 1). With 1.5
equiv of ligand 2c, 35% ee was obtained without eroding the
yield. Interestingly, addition of 10% of Ni(ClO4)2 or Zn(ClO4)2
drastically increased the ees to 91%, indicating the important role
of ClO4ꢀ (entries 3–4). The presence of 100% CsI also provided 1
with 30% ee (entry 5). These results suggest that transformation
of allylꢀNi to allylꢀZn is not necessary for this coupling event.14
In addition, treatment of 4ꢀanisaldehyde with allylbromide in
the presence or absence of Ni(ClO4)2•6H2O led to 5 in excellent
10 yields (Scheme 2). No enantioselectivities were observed in both
cases, owing to in situ formation of allylꢀzinc reagents that react
with aldehyde through a Barbier mechanism.15 As a result, we
reason that in our Niꢀcatalyzed reductive coupling process, the
enantioselectivity should not arise from allylꢀzinc reagents,
15 although their in situ formation cannot be excluded.
3
4
65
70
5
75
80
Conditions A: Ni(ClO4)2●6H2O (10 mol %), 2c (15 mol %), Zn (300 mol
%), DMF, rt. Conditions B: 2c (15 mol %), Zn (300 mol %), DMF, rt.
5
85
20 Scheme 2. Coupling of allylbromide with 4ꢀanisaldehyde
In summary, we have disclosed asymmetric Niꢀcatalyzed
reductive coupling of allylic carbonates with aldehydes utilizing
zinc powder as the terminal reductant. The reaction conditions are
25 particularly effective for the 2ꢀarylꢀallylic carbonates which
generate the homoallylic alcohols in good to excellent ees for
both aromatic and aliphatic aldehydes. The preliminary studies
suggest that the enantioselectivity arises from addition of allylꢀNi
to aldehydes rather than the more reactive allylꢀZn that may be
30 produced in the reactions.
We thank Ms. Yijing Dai for initial discovery of this reaction,
Prof. Yongjian Zhang (Shanghai Jiaotong University) for helpful
advices, and Dr Hongmei Deng (Shanghai University) for helping
use of the NMR facilities. Financial support was provided by the
35 Chinese NSF (Nos.21172140, 21372151, 21174081 and
21102088), and the Program for Professor of Special
Appointment at Shanghai Institutions of Higher Learning
Shanghai Education Committee.
90
6
7
95
100
105
110
8
9
Notes and references
40 a Department of Chemistry, Innovative Drug Research Center, and School
of Materials Science and Engineering, Shanghai University, 99 Shang-Da
Road, Shanghai 200444, China. E-mail: Hegui_gong@shu.edu.cn
† Electronic Supplementary Information (ESI) available: Charaterization
of all new compounds and HPLC data for ees. See
45 DOI: 10.1039/b000000x/
10 J. Montgomery, Angew. Chem. Int. Ed. 2004, 43, 3890
11 (a) Y. Dai, F. Wu, Z. Zang, H. You and H. Gong, Chem.—Eur. J.
2012, 16, 808. (b) X. Yu, T. Yang, S. Wang, H. Xu and Gong, H.
Org. Lett. 2011, 13, 2138. (c) H. Xu, C. Zhao, Q. Qian, W. Deng and
H. Gong, Chem. Sci. 2013, 4, 4022.
12 For stiochiometric addition of allylꢀNi to carbonyl, see: (a) E. J.
Corey and M. F. Semmelhack, J. Am. Chem. Soc. 1967, 89, 2755. (b)
L. S. Hegedus and R. K. Stlverson, J. Am. Chem. Soc. 1974, 96, 3250.
13 I. S. Kim, S. B. Han, and M. J. Krische, J. Am. Chem. Soc. 2009, 131,
2514.
14 (a) For reductive transmetallation of allylꢀPd with In, see: G. Fontana,
A. Lubineau and M.ꢀC. Scherrmann, Org. Biomol. Chem. 2005, 3,
1375. (b) S. Durandetti, S. Sibille and J. Perichon, J. Org. Chem.
1989, 54, 2198.
15 B. W. Berton, J. H. Shugart, C. A. Hughey, B. P., Conrad and S. M.
Perala, Molecules 2001, 6, 655.
115
120
125
1
For reviews on enantioselective carbonyl allylation, see: (a) M. Yus,
J. C. GonzálezꢀGómez and F. Foubelo, Chem. Rev. 2011, 111, 7774.
(b) I. Marek and G. Sklute, Chem. Commun. 2007, 43, 1683. (c) D. G.
Hall, Synlett 2007, 1644. (d) S. E. Denmark and J. Fu, Chem. Rev.
2003, 103, 2763. (e) J. W. J. Kennedy and D. G. Hall, Angew. Chem.,
Int. Ed. 2003, 42, 4732. (f) P. V. Ramachandran, Aldrichimica Acta
2002, 35, 23.
50
55
2
For selected examples of asymmetric NHK reactions, see: (a) G. Xia
and H. Yamamoto, J. Am. Chem. Soc. 2006, 128, 2554. (b) Q.ꢀH.
Deng, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2011, 17, 14922. (c)
K. C. Harper, M. S. Sigman, Science, 2011, 333, 1875. (d) M.
Bandini, P. G. Cozzi, P. Melchiorre and A. UmaniꢀRonchi, Angew.
Chem. Int. Ed. 1999, 38, 3357. (d) Z. Zhang, S. Aubry, Y. Kishi, Org.
This journal is © The Royal Society of Chemistry year
Journal Name, year, vol, 00–00 | 3