Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Organic Letters
Letter
Scheme 4. Proposed Mechanism
AUTHOR INFORMATION
Corresponding Authors
■
́
(J. Aleman).
ORCID
́
́
Jose A. Fernandez-Salas: 0000-0003-3158-9607
́
́
Jose Aleman: 0000-0003-0164-1777
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank DGAPA-UNAM (Project No. UNAM-PAPIIT-
IN205319) for financial support. R.I.R. thanks CONACYT for
■
establish the opposite configuration at the benzylic center. The
results obtained can be rationalized with the formation of a free
carbanion, which adopts a planar C(sp2) structure (TS-I). This
is in accordance with the observed better outcome at higher
temperatures (0 °C) and in the presence of TMEDA, which
would preferably avoid interactions between Li+ and the
carbanionic center. Therefore, the sulfinyl group assumes an
anti-arrangement (S−O bond versus the carbanionic C−O
bond), with respect to the benzyl carbanion center, in order to
avoid unfavorable electrostatic interactions. The reaction is
then controlled by sterics, the upper face being clearly favored
for the approach of the alkene as the p-tolyl group is blocking
the opposite face (TS-I). A five-membered envelope-type
transition state2b and the defined E configuration of the double
bond leads to the formation of the anti-isomer. A similar
approach would explain the configuration obtained in the
synthesis of enantio-enriched allenyl alcohols. In order to
explain the observed minor diastereomers, we propose the
formation of a “chelated” carbanion (TS-II), where the anion
is formed and the top face is blocked. Therefore, the alkene
reacts from the bottom face, establishing the opposite
confirmation at the benzylic center (R).
́
a graduate fellowship (Grant No. 663631) and Fundacion
Carolina. E.R. thanks DGAPA-UNAM for a postdoctoral
́
́
́
́
fellowship. We also thank E. Garcıa Rıos, C. Garcıa Gonzalez,
́ ́
̃ ̃
R. Gavino, L. C. Marquez, M. A. Pena, and L. M. Rıos
(UNAM) for their technical assistance. We are also grateful to
the Spanish Government (No. CTQ2015-64561-R) and J.A.F.-
S. thanks the Spanish Government for a Juan de la Cierva
contract.
REFERENCES
■
(1) (a) Isobe, M.; Ploysuk, C. Molecular Rearrangements in Organic
Synthesis; Rojas, C. M., Ed.; Wiley: Hoboken, NJ, 2015; pp 539−567.
(b) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B. M. Angew. Chem.,
Int. Ed. 2014, 53, 2556−2591. (c) Sweeney, J. B. Chem. Soc. Rev.
2009, 38, 1027−1038. (d) Doyle, M. P. Chem. Rev. 1986, 86, 919−
939.
(2) For a review, see: (a) Moyano, A.; El-Hamdouni, N.; Atlamsani,
A. Chem. - Eur. J. 2010, 16, 5260−5273. (b) West, T. H.; Spoehrle, S.
S. M.; Kasten, K.; Taylor, J. E.; Smith, A. D. ACS Catal. 2015, 5,
7446−7479.
(3) For selected examples, see: (a) Kasten, K.; Slawin, A. M. Z.;
Smith, A. D. Org. Lett. 2017, 19, 5182−5185. (b) West, T. H.;
Spoehrle, S. S. M.; Smith, A. D. Tetrahedron 2017, 73, 4138−4149.
(c) Blid, J.; Panknin, O.; Somfai, P. J. Am. Chem. Soc. 2005, 127,
9352−9353. (d) West, T. H.; Daniels, D. S.; Slawin, A. M. Z.; Smith,
A. D. J. Am. Chem. Soc. 2014, 136, 4476−4479. (e) West, T. H.;
Walden, D. M.; Taylor, J. E.; Brueckner, A. C.; Johnston, R. C.;
Cheong, P. H.; Lloyd-Jones, G. C.; Smith, A. D. J. Am. Chem. Soc.
2017, 139, 4366−4375. (f) Kasten, K.; Slawin, A. M. Z.; Smith, A. D.
Org. Lett. 2017, 19, 5182−5185.
(4) For selected examples, see: (a) Ma, M.; Peng, L.; Li, C.; Zhang,
X.; Wang, J. J. Am. Chem. Soc. 2005, 127, 15016−15017. (b) Li, Z.;
Boyarskikh, V.; Hansen, J. H.; Autschbach, J.; Musaev, D. G.; Davies,
H. M. L. J. Am. Chem. Soc. 2012, 134, 15497−15504. (c) Zhang, Z.;
Sheng, Z.; Yu, W.; Wu, G.; Zhang, R.; Chu, W.-D.; Zhang, Y.; Wang,
J. Nat. Chem. 2017, 9, 970−976. (d) Lin, X.; Tang, Y.; Yang, W.; Tan,
F.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2018, 140, 3299−3305.
(e) Hock, K. J.; Koenigs, R. M. Angew. Chem., Int. Ed. 2017, 56,
13566−13568.
In conclusion, the involvement of the key chiral auxiliary
ortho-sulfinyl group has led to an asymmetric [2,3]-Wittig
rearrangement in a nonactivated benzylic position. A wide
range of ethers have been studied, wherein allylic and
propargylic ethers efficiently rearranged to the corresponding
homoallylic and allenyl alcohols with very high diastereose-
lectivities. Finally, the auxiliary can be easily removed, leading
to the desired enantiomerically pure homoallylic alcohols.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(5) For a review, see: (a) Nakai, T.; Tomooka, K. Pure Appl. Chem.
1997, 69, 595−600. (b) Hodgson, D. M.; Tomooka, K.; Gras, E. Top.
Organomet. Chem. 2003, 5, 217−250. For selected examples, see:
(c) Kitamura, M.; Hirokawa, Y.; Maezaki, N. Chem. - Eur. J. 2009, 15,
9911−9917. (d) Hirokawa, Y.; Kitamura, M.; Mizubayashi, M.;
Nakatsuka, R.; Kobori, Y.; Kato, C.; Kurata, Y.; Maezaki, N. Eur. J.
Org. Chem. 2013, 2013, 721−727. (e) Kitamura, M.; Hirokawa, Y.;
Yoshioka, Y.; Maezaki, N. Tetrahedron 2012, 68, 4280−4285.
(f) Blackburn, T. J.; Kilner, M. J.; Thomas, E. J. Tetrahedron 2015,
71, 7293−7309. (g) Hirokawa, Y.; Kitamura, M.; Maezaki, N.
Tetrahedron: Asymmetry 2008, 19, 1167−1170. (h) Tomooka, K.;
Komine, N.; Nakai, T. Chirality 2000, 12, 505−509. (i) Kawasaki, T.;
1H and 13C spectra for all new compounds and X-ray
data for 2e′ and 7a (PDF)
Accession Codes
CCDC 1875997 and 1875998 contain the supplementary
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
D
DOI: 10.1021/acs.orglett.8b03659
Org. Lett. XXXX, XXX, XXX−XXX