Gawinecki et al.
â-Amino-R,â-unsaturated carbonyl compounds are capable of
undergoing spontaneously conformational and configurational
isomerizations in solution.15f-q,18 Enaminone tautomers of
3-aminoacroleins, which are stabilized by intramolecular hy-
drogen bonds, and their open forms are favored in nonpolar
and polar solvents, respectively.15d Benzo-annulation is known
to affect the stability of enaminones and their tautomers. The
relative energy of the tautomers was found to be governed
mainly by a change in the degree of heterocycle aromaticity
upon hydrogen transfer, but the strength of the intramolecular
hydrogen bond provides also some contribution.19 Thus, only
enolimine and ketiminone forms were detected when R1,R2 )
benzo (Scheme 1).15a Further, benzo-annulation of the pyridine
ring in molecules of these compounds at 3,4- and/or 5,6-
positions stabilizes the enaminone tautomer (NH form).14,15b,c
In solution, numerous 3,4-benzo-annulated enaminones, i.e.,
2-[(phenylamino)methylene]-cyclohexa-3,5-dien-1-ones, were
found to be in equilibrium with the usually less stable20
enolimine derivatives, i.e., N-salicylideneamines.11,12,21 Polar
solvents, low temperatures, and benzo-annulation both in
positions 2,3 and 4,5 favor the NH form.21c,22 The NH tautomer
is the only form present in the crystalline state of N-(2-hydroxy-
1-naphthylmethylidene)aniline21c and the major form detected
in solutions of N-(10-hydroxy-9-phenanthrylmethylidene)-
aniline.20b The proton transfer between N-salicylideneanilines
and their enaminone tautomeric forms can take place not only
in solution but also in the condensed phase.23 Since the
compound under such conditions represents a superposition of
the OH and NH tautomers,24 each bond length measured is a
weighted average of the corresponding bond lengths in these
species according to their molar ratios. It is therefore concluded
that the population of the NH tautomer increases with lowering
the temperature. Analysis of the molecular geometry shows that
the enaminone has a zwitterionic character (it is predominantly
quinoid in the gas phase).17a,24b Stabilization of the NH form in
the crystalline state results primarily from intermolecular
hydrogen bonding.24b Changes in the population of the NH and
OH tautomers in the crystalline state and in solution with
variation of temperature are responsible for the thermochromic
properties of numerous salicylideneanilines.17a,20a,24b
As suggested by Gilli et al.,25 Schiff bases derived from
aromatic o-hydroxyaldehydes show synergism between strength
of the hydrogen bond and degree of delocalization of π electrons
(however, no dependence between delocalization of the π
electrons and the H-bond strength was observed in the crystalline
state26). The composition of a tautomeric mixture depends on
the stability of the respective tautomers which, in turn, is related
to the π-electron delocalization in the molecule and to the
strength of the intramolecular hydrogen bond15a,22a,25 (N‚‚‚H-O
hydrogen bonds are stronger than N-H‚‚‚O bonds17b,c,24a).
Imines of salicylaldehyde are simple models of the respective
pyridoxal derivatives which play an important role in enzymatic
transformations of R-amino acids27 (all these compounds contain
the hydroxy group in the ortho position with respect to the
methylideneamine function). The presence of an intramolecular
hydrogen bond is essential for the enzymatic properties of Schiff
bases of pyridoxal phosphate and R-amino acids. The proton-
transfer process from oxygen to nitrogen atom in these
molecules is the first step of the catalytic cycle.28 Sirtinol, 2-[(2-
hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenylethyl)-
benzamide, the best known inhibitor of the SIRT2 (silent
information regulator) which deacetylates R-tubulin and par-
ticipates in controlling the mitotic exit in the cell cycle,29 is
another Schiff base of the same type, which additionally contains
the CONHCH(CH3)Ph group. Benzo-annulation is expected to
have a stabilizing effect on selected tautomers of N-salicylide-
neaniline. On the other hand, ortho-C(dO)X substituents in such
compounds should enable the formation of additional tautomeric
species. Thus, it would be interesting to clarify how these two
effects influence the tautomeric equilibria in solutions of
N-salicylideneanilines. Aims of the present paper are (i) to show
how the position of benzo-annulation in N-salicylideneaniline
affects the tautomeric equilibria in solution (one would ask
which tautomer, i.e., more or less aromatic, is more stable), and
(ii) to clarify the capability of the o-carbonyl group in the
“anilinic” benzene ring of these compounds to attract the acidic
H-atom.
(17) (a) Ogawa, K.; Harada, J. J. Mol. Struct. 2003, 647, 211-216. (b)
Buemi, G.; Zuccarello, F.; Venuvanalingam, P.; Ramalingam, M. Theor.
Chem. Acc. 2000, 104, 226-234. (c) Rybarczyk-Pirek, A.; Grabowski, S.
J.; Małecka, M.; Nawrot-Modranka, J. J. Phys. Chem. A 2002, 106, 11956-
11962.
(18) Da¸browski, J. Spectrochim. Acta 1963, 19, 475-496.
(19) Zubatyuk, R. I.; Volovenko, Y. M.; Shishkin, O. V.; Gorb, L.;
Leszczyn´ski, J. J. Org. Chem. 2007, 72, 725-735.
(20) (a) Cohen, M. D.; Schmidt, G. M. J. J. Phys. Chem. 1962, 66, 2442-
2446. (b) Alarco´n, S. H.; Olivieri, A. C.; Labadie, G. R.; Cravero, R. M.;
Gonza´les-Sierra, M. Tert. 1995, 51, 4619-4626.
Results and Discussion
(21) (a) Ferna´ndez-G., J. M.; del Rio-Portilla, F.; Quiroz-Garc´ıa, B.;
Toscano, R. A.; Salcedo, R. J. Mol. Struct. 2001, 561, 197-207. (b)
Sitkowski, J.; Stefaniak, L.; Dziembowska, T.; Grech, E.; Jagodzin´ska, E.;
Webb, G. A. J. Mol. Struct. 1996, 381, 177-180. (c) Salman, S. R.; Lindon,
J. C.; Farrant, R. D.; Carpenter, T. A. Magn. Reson. Chem. 1993, 31, 991-
994. (d) Galic´, N.; Cimerman, Z.; Tomis´ic´, V. Anal. Chim. Acta 1997, 343,
135-143. (e) Nazir, H.; Yildiz, M.; Yilmaz, H.; Tahir, M. N.; U¨ lku¨, D. J.
Mol. Struct. 2000, 524, 241-250. (f) Becker, R. S.; Richey, W. F. J. Am.
Chem. Soc. 1967, 89, 1298-1302. (g) Hansen, P. E.; Sitkowski, J.;
Stefaniak, L.; Rozwadowski, Z.; Dziembowska, T. Ber. Bunsen-Ges. Phys.
Chem. 1998, 102, 410-413. (h) Dziembowska, T. Pol. J. Chem. 1998, 72,
193-203. (i) Kro´l-Starzomska, I.; Rospenk, M.; Rozwadowski, Z.; Dzi-
embowska, T. Pol. J. Chem. 2000, 74, 1441-1446.
(22) (a) Zhuo, J.-C. Magn. Reson. Chem. 1999, 37, 259-268. (b)
Antonov, L.; Fabian, W. M. F.; Nedeltcheva, D.; Kamounah, F. S. J. Chem.
Soc., Perkin Trans. 2 2000, 1173-1179. (c) Dudek, G. O.; Dudek, E. P. J.
Am. Chem. Soc. 1966, 88, 2407-2412. (d) Joshi, H.; Kamounah, F. S.;
van der Zwan, G.; Gooijer, C.; Antonov, L. J. Chem. Soc., Perkin Trans.
2 2001, 2303-2308.
The N-salicylideneanilines 1-20 presented in Scheme 2 were
obtained by simple condensation of the respective aldehyde with
substituted anilines (see Experimental Section). Because of the
high tendency of some compounds to hydrolyze, we were not
able to prepare methyl N-salicylideneanthranilate (11), N-
salicylidene-o-aminoacetophenone (16, known compound30), and
(25) Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc.
2000, 122, 10405-10417.
(26) Krygowski, T. M.; Ste¸pien´, B.; Anulewicz-Ostrowska, R.; Dziem-
bowska, T. Tetrahedron 1999, 55, 5457-5464.
(27) (a) Sharif, Sh.; Denisov, G. S.; Toney, M. D.; Limbach, H.-H. J.
Am. Chem. Soc. 2006, 128, 3375-3387. (b) Sanz, D.; Perona, A.; Claramunt,
R. M.; Elguero, J. Tetrahedron 2005, 61, 145-154. (c) Spies, M. A.; Toney,
M. D. Biochemistry 2003, 42, 5099-5107. (d) Malashkevitch, V. N.; Toney,
M. D.; Jansonius, J. N. Biochemistry 1993, 32, 13451-13462. (e) Zhou,
X.; Toney, M. D. Biochemistry 1999, 38, 311-320.
(28) Christen, P., Metzler, P. E., Eds, Transaminases; Wiley: New York,
2005.
(29) North, B. J.; Marshall, B. L.; Borra, M. T.; Denu, J. M.; Verdin, E.
Mol. Cell 2003, 11, 437-444.
(23) Elmali, A.; Kabak, M.; Kavlakoglu, E.; Elerman, Y.; Durlu, T. N.
J. Mol. Struct. 1999, 510, 207-214.
(24) (a) Sobczyk, L.; Grabowski, S. J.; Krygowski, T. M. Chem. ReV.
2005, 105, 3513-3560. (b) Ogawa, K.; Kasahara, Y.; Ohtani, Y.; Harada,
J. J. Am. Chem. Soc. 1998, 120, 7107-2412.
5600 J. Org. Chem., Vol. 72, No. 15, 2007