NJC
Paper
5 (a) J. Teng and X. W. Yang, Heterocycles, 2006, 68, 1691;
(b) K. Jayapaul, K. P. B. Kavi and R. K. Janardhan, In Vitro
Cell. Dev. Biol.: Plant, 2005, 41, 682–685.
6 (a) I. Kahn, A. Ibrar, N. Abbas and A. Saeed, Eur. J. Med.
Chem., 2014, 76, 193; (b) I. Kahn, A. Ibrar, N. Abbas and
A. Saeed, Eur. J. Med. Chem., 2015, 90, 124.
Conclusion
To conclude, an environmentally benign catalyst and solvent-
free tandem approach for the synthesis of highly functionalized
fused quinazolinones with good to excellent yields has been
demonstrated. The designed substrates, 3-(2-formylcycloalkenyl)-
acrylic ester derivatives, are effective coupling partners for anthra-
nilamide compounds to synthesize highly fused quinazolinones
under neat conditions with wide substrate scope, step-atom
economy and minimal work-up procedure. The synthesized
compounds show good fluorescence properties and hence
photophysical properties in different solvents and solvent–solute
interactions in the excited state of the synthesized fluorophore are
also documented. Since our study compound chemosensitized
HepG2 and PC3 cell lines, we will use this compound in an
in vivo mouse model for future research.
7 (a) C. Kogawa, A. Fujiwara, R. Sekiguchi, T. Shoji, J. Kawakami,
M. Okazaki and S. Ito, Tetrahedron, 2018, 74, 7018; (b) L. Liu,
Y. Zhang, J. Zhou, J. Yang, C. Zhong, Y. Zhang, Y. Luo, Y. Fu,
J. Huang, Z. Song and Y. Peng, Dyes Pigm., 2019, 165, 58.
8 (a) L. He, H. Li, J. Chen and X.-F. Wu, RSC Adv., 2014,
4, 12065; (b) R. K. Saunthwal, M. Patel, R. K. Tiwari,
K. Parang and A. K. Verma, Green Chem., 2015, 17, 1434;
(c) H. Wang, S. Jiao, K. Chen, X. Zhang, L. Zhao, D. Liu,
Y. Zhou and H. Liu, Beilstein J. Org. Chem., 2015, 11, 416;
(d) R. Cheng, L. Tang, T. Guo, D. Zhang-Negrerie, Y. Du and
K. Zhao, RSC Adv., 2014, 4, 26434; (e) N. Y. Kim and C.-H.
Cheon, Tetrahedron Lett., 2014, 55, 2340; ( f ) H. Lu, Q. Yang,
Y. Zhou, Y. Guo, Z. Deng, Q. Ding and Y. Peng, Org. Biomol.
Chem., 2014, 12, 758; (g) H. Baguia, C. Deldaele, E. Romero,
B. Michelet and G. Evano, Synthesis, 2018, 3022; (h) L. Xie,
C. Lu, D. Jing, X. Ou and K. Zheng, Eur. J. Org. Chem., 2019,
3649; (i) G. Bairy, S. Das, H. M. Begam and R. Jana, Org. Lett.,
2018, 20, 7107; ( j) S. Chatterjee, R. Srinath, S. Bera,
K. Khamaru, A. Rahman and B. Banerji, Org. Lett., 2019,
21, 9028.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
We thank the Department of Science, Technology and Biotech-
nology under the Government of West Bengal (212 (sanc.)/ST/P/
S&T/15G-44/2017) for financial support.
9 B. Banerji, S. Bera, S. Chatterjee, S. K. Killi and S. Adhikary,
Chem. – Eur. J., 2016, 22, 3506.
10 J.-Q. Liu, Y.-G. Ma, M.-M. Zhang and X.-S. Wang, J. Org.
Chem., 2017, 82, 4918.
11 R. Lingayya, M. Vellakkaran, K. Nagaiah and J. B. Nanubolu,
Asian J. Org. Chem., 2015, 4, 462.
12 A. Servais, M. Azzouz, D. Lopes, C. Courillon and
M. Malacria, Angew. Chem., Int. Ed., 2007, 46, 576.
13 Y. Zheng, W.-B. Song, S.-W. Zhang and L.-J. Xuan, Org.
Biomol. Chem., 2015, 13, 6474.
14 (a) S. K. Manna, A. Mandal, S. K. Mondal, A. K. Adak,
A. Jana, S. Das, S. Chattopadhyay, S. Roy, S. K. Ghorai,
S. Samanta, M. Hossain and M. Baidya, Org. Biomol. Chem.,
2015, 13, 8037; (b) S. K. Manna, S. K. Mondal, A. Ahmed,
A. Mandal, A. Jana, M. Ikbal, S. Samanta and J. K. Ray, RSC
Adv., 2014, 4, 2474; (c) S. K. Mondal, S. K. Manna, A. Mandal,
S. Samanta and J. K. Ray, Tetrahedron Lett., 2014, 55, 6411;
(d) A. Jana, S. K. Manna, S. K. Mondal, A. Mandal, A. Jana,
B. K. Senapati, M. Jana and S. Samanta, Tetrahedron Lett.,
2016, 57, 3722; (e) S. K. Mondal, A. Mandal, S. K. Manna, Sk.
A. Ali, M. Hossain, V. Venugopal, A. Jana and S. Samanta,
Org. Biomol. Chem., 2017, 15, 2411; ( f ) S. K. Mondal, S. A.
Ali, S. K. Manna, A. Mandal, B. K. Senapati, M. Hossain and
S. Samanta, ChemistrySelect, 2017, 2, 9312.
References
1 (a) K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025–1074;
(b) F. Toda, M. Yagi and K. Kiyoshige, J. Chem. Soc., Chem.
Commun., 1988, 958; (c) F. Toda, K. Kiyoshige and M. Yagi,
Angew. Chem., Int. Ed. Engl., 1989, 28, 320; (d) F. Toda, K. Tanaka
and K. Hamai, J. Chem. Soc., Perkin Trans. 1, 1990, 3207;
(e) C. M. Etter, M. G. Frankenbach and J. Bernstein, Tetrahedron
Lett., 1989, 30, 3617; ( f ) Y. Hayashi, Chem. Sci., 2016, 7, 866.
2 (a) S. A. Ali, S. K. Mondal, T. Das, S. K. Manna, A. Bera,
D. Dafadar, S. Nasakar, M. R. Molla and S. Samanta, Org.
Biomol. Chem., 2019, 17, 4652; (b) G. C. Senadi, V. S. Kudale
and J.-J. Wang, Green Chem., 2019, 21, 979; (c) L.-R. Wen,
Z.-R. Li, M. Li and H. Cao, Green Chem., 2012, 14, 707;
(d) H. Wei, L. Zhou, Y. Zhou and Q. Zeng, Toxicol. Environ.
Chem., 2015, 97, 2.
3 (a) H. Wang and A. Ganesan, J. Org. Chem., 2000, 65, 1022;
(b) P. Molina, A. Tarraga, A. Gonzalez-Tejero, I. Rioja, A. Ubeda,
´
M. C. Terencio and M. J. Alcaraz, J. Nat. Prod., 2001, 64, 1297;
(c) S. E. deLaszlo, C. S. Quagliato, W. J. Greenlee, A. A. Patchett,
R. S. L. Chang, V. J. Lotti, T. B. Chen, S. A. Scheck, K. A. Faust,
S. S. Kivlighn, T. S. Schorn, G. J. Zingaro and P. K. S. Siegl, J. Med.
Chem., 1993, 36, 3207; (d) M. Sharma, K. Chauhan, R. Shivahare,
P. Vishwakarma, M. K. Suthar, A. Sharma, S. Gupta, J. K. Saxena,
J. Lal and P. Chandra, J. Med. Chem., 2013, 56, 4374.
4 (a) U. A. Kshirsagar, Org. Biomol. Chem., 2015, 13, 9336;
(b) A. M. Tucker and P. Grundt, ARKIVOC, 2012, 546;
(c) X. Liu, P. Qian, Y. Wang and Y. Pan, Org. Chem. Front.,
2017, 4, 2370.
15 CCDC 3b is 1945935†.
16 N. Y. Kim and C.-H. Cheon, Tetrahedron Lett., 2014, 55, 2340.
17 A. Yuan, C. Zheng, Z. Zhang, L. Yang, C. Liu and H. Wang,
J. Fluoresc., 2014, 24, 557.
18 A. V. Kulinich, E. K. Mikitenko and A. Ishchenko, Phys.
Chem. Chem. Phys., 2016, 18, 3444.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020