6 of 6
SHANSHAK ET AL.
[2] M. A. Mironov, QSAR Comb. Sci. 2006, 25, 423.
[3] B. Ganem, Acc. Chem. Res. 2009, 42, 463.
[4] A. Dömling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
[5] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014,
57, 10257.
[6] J. Zhua, J. Moa, H. Lina, Y. Chenb, H. Suna, Bioorg. Med.
Chem. 2018, 26, 3065.
[7] (a) F. H. M. Szostak, Adv. Synth. Catal. 2015, 357, 2583; (b)
A. D. O. Silva, J. McQuade, M. Szostak, Adv. Synth. Catal
2019, 361, 3050.
enol tautomerism results to form the intermediate (C),
after which nucleophilic addition of aldehyde is coordi-
nated with nanocatalyst to form intermediate (D). Fur-
ther removal of water molecules leads to the formation of
an intermediate (E), which eventually undergoes cycliza-
tion to form the intermediate (F) that removes the etha-
nol molecule to obtain the target molecule.
[8] S. Y. Jadhav, S. P. Shirame, S. D. Kulkarni, S. B. Patil,
S. K. Pasale, R. B. Bhosale, Bioorg. Med. Chem. Lett. 2013, 23,
2575.
[9] K. R. Reddy, P. S. Rao, G. J. Dev, Y. Poornachandra,
C. G. Kumar, P. S. Rao, B. Narsaiah, Bioorg. Med. Chem. Lett.
2014, 24, 1661.
[10] S. Breuer, M. W. Chang, J. Yuan, B. E. Torbett, J. Med. Chem.
2012, 55, 4968.
[11] S¸. G. Kömürcü, S. Rollas, N. Yilmaz, A. Çevikbas¸, Drug Metab.
Drug Interact. 1995, 12, 161.
[12] B. Kafle, N. G. Aher, D. Khadka, H. Park, H. Cho, Chem. –
Asian J. 2011, 6, 2073.
[13] J. P. Demers, W. E. Hageman, S. G. Johnson,
D. H. Klaubert, R. A. Look, J. B. Moore, Bioorg. Med. Chem.
Lett. 1994, 4, 2451.
[14] N. Panathur, N. Gokhale, U. Dalimba, P. V. Koushik,
P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett. 2015, 25,
2768.
[15] H. Kiyani, F. Ghorbani, Res. Chem. Intermediat. 2015, 41,
2653.
[16] A. B. Rikani, D. Setamdideh, Orient. J. Chem. 2016, 32, 17976.
[17] A. Mosallanezhad, H. Kiyani, Curr. Organocatal. 2019, 6, 28.
[18] S. Tu, J. Zhang, R. Jia, B. Jiang, Y. Zhang, H. Jiang, Org. Bio-
mol. Chem. 2007, 5, 1450.
[19] Y. Q. Zhang, C. C. Wang, J. Org. Chem. 2008, 28, 141.
[20] K. Ablajan, H. Xiamuxi, Synth. Commun. 2012, 42, 1128.
[21] F. Saikh, J. Das, S. Ghosh, Tetrahedron Lett. 2013, 54, 4679.
[22] R. Y. Hong, S. Z. Zhang, G. Q. Di, H. Z. Li, Y. Zheng, J. Ding,
D. G. Wei, Mater. Res. Bull. 2008, 43, 2457.
3 | CONCLUSIONS
In summary, we prepared ZnO-decorated Fe3O4 magnetic
core–shell nanoparticles and characterized them by
FTIR, UV–vis, FESEM, EDX and p-XRD techniques.
Further, this nanocatalyst was used for the highly
efficient, green and one-pot, three-component reaction
for the synthesis of structurally electronically varied
3,4-disubstituted isoxazol-5(4H)-ones, which are consid-
ered as biologically and pharmacologically active com-
pounds. The present procedure was accomplished by the
use of nanocatalyst in water, which in turn helps to
reduce cost-effectiveness and energy. The significant
merits of the nanocatalyst were ascribed to its high selec-
tivity, promising catalytic activity, easy separation and
recyclability. The process does not require the use of any
volatile organic solvent, harmful metal catalysts and high
temperatures. Moreover, this method also has the ability
to tolerate a wide variety of substituents with varied steric
and electronic parameters. The versatility of this method-
ology is suitable for library synthesis in drug discovery
efforts. We believe that the present improved modifica-
tion is a convenient and efficient alternative to the exis-
ting methods for the multicomponent synthesis of
isoxazol-5(4H)-one derivatives.
ACKNOWLEDGEMENTS
We are grateful to the Jain University, Bangalore for
financial support. Also, thanks are due to Dr Karam
Chand, Umea University, Sweden for valuable sugges-
tions. We also thank Nanomission (SR/NM/NS-20/2014)
for providing FESEM, EDX and p-XRD facilities.
SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.
How to cite this article: Shanshak M,
Budagumpi S, Małecki JG, Keri RS. Green
synthesis of 3,4-disubstituted isoxazol-5(4H)-ones
using ZnO@Fe3O4 core–shell nanocatalyst in
water. Appl Organometal Chem. 2020;e5544.
ORCID
REFERENCES
[1] (a)D. C. Swinney, J. Anthon, Nat. Rev. Drug Discov. 2011, 10,
507. (b)V. Azzarito, K. Long, N. S. Murphy, A. J. Wilson, Nat.
Chem. 2013, 5, 161.