Journal of the American Chemical Society
Article
Supporting Information). At 80 °C, the zero-order rate constants for
decay of 3 and growth of 4 are 6.5(3) × 10−7 s−1 and 7.0(3) × 10−7
s−1, respectively (Figure S11 in the Supporting Information).
Present Address
#Institute of Chemical Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, U.K.
Reaction of Gomberg’s Dimer with [Cl2NN]Cu-NH-2-py (6). A
stock solution of Gomberg’s dimer with an internal standard was
prepared by dissolving (Ph3C)2·pentane (36 mg, 0.0644 mmol) and
1,2,4,5-tetrachlorobenzene (13.9 mg, 0.0644 mmol) in 3.00 mL of
C6D6 (0.0215 M). A vial containing 0.500 mL of this stock solution
(0.0107 mmol (Ph3C)2·pentane and 0.0107 mmol standard) was
concentrated to dryness in vacuo to remove excess pentane. 2.0 equiv
of [Cl2NN]Cu(κ2-NH-2-py) (11.7 mg, 0.0215 mmol) in 0.500 mL of
C6D6 was added to the vial containing 1.0 equiv of (Ph3C)2 and then
transferred to an NMR tube for measurement. An immediate color
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to NSF (CHE-1012523 and CHE-1300774,
T.H.W.; CHE-1057785, T.R.C.) for support of this work. K.M.
acknowledges financial support from the Friedrich-Alexander-
University (FAU) Erlangen-Nurnberg.
̈
1
change was observed resulting in a yellow solution, and the H NMR
spectrum of this solution was taken after 20 min identifying [Cl2NN]
Cu and Ph3C-NH-2-py in 78% yield each (Figure S12 in the
Supporting Information). The formation of Ph3C-NH-2-py was
confirmed by its independent synthesis according to a literature
REFERENCES
■
(1) (a) Dauban, P.; Dodd, R. H. In Amino Group Chemistry; Ricci, A.,
Ed.; Wiley-VCH: Weinheim, 2008; pp 55−92. (b) Collet, F.; Lescot,
C.; Liang, C.; Dauban, P. Dalton Trans. 2010, 39, 10401−10413.
(c) Zalatan, D. N.; Du Bois, J. Top. Curr. Chem. 2010, 292, 347−378.
(d) Zhang, X. P.; Lu, H. Chem. Soc. Rev. 2011, 40, 1899−1909.
(2) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061−
5074.
(3) Berry, J. F. Comments Inorg. Chem. 2009, 30, 28−66.
(4) (a) Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562−
568. (b) Liang, C.; Collet, F.; Robert-Peillard, F.; Muller, P.; Dodd, R.
H.; Dauban, P. J. Am. Chem. Soc. 2008, 130, 343−350. (c) Du Bois, J.
Org. Process Res. Dev. 2011, 15, 758−762. (d) Au, S.-M.; Huang, J.-S.;
Yu, W.-Y.; Fung, W.-H.; Che, C.-M. J. Am. Chem. Soc. 1999, 121,
9120−9132. (e) Leung, S. K.-Y.; Tsui, W.-M.; Huang, J.-S.; Che, C.-
M.; Liang, J.-L.; Zhu, N. J. Am. Chem. Soc. 2005, 127, 16629−16640.
(f) Au, S.-M.; Huang, J.-S.; Che, C.-M.; Yu, W.-Y. J. Org. Chem. 2000,
65, 7858−7864. (g) Harvey, M. E.; Musaev, D. G.; Du Bois, J. J. Am.
Chem. Soc. 2011, 133, 17207−17216. (h) Liang, J.-L.; Yuan, S.-X.;
Huang, J.-S.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2002, 41,
3465−3468. (i) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int.
Ed. 2008, 47, 6825−6828. (j) Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.;
Che, C.-M. Org. Lett. 2000, 2, 2233−2236.
(5) (a) Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951−
1953. (b) Badiei, Y. M.; Krishnaswamy, A.; Melzer, M. M.; Warren, T.
H. J. Am. Chem. Soc. 2006, 128, 15056−15057.
(6) Gephart, R. T., III; Warren, T. H. Organometallics 2012, 31,
7728−7752.
(7) Badiei, Y. M.; Dinescu, A.; Dai, X.; Palomino, R. M.; Heinemann,
F. W.; Cundari, T. R.; Warren, T. H. Angew. Chem., Int. Ed. 2008, 47,
9961−9964.
(8) (a) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127,
14198−14199. (b) Huard, K.; Lebel, H. Chem.Eur. J. 2008, 14,
6222−6230.
(9) Zhang, J.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett. 2005, 46,
5403−5408.
(10) (a) King, E. R.; Hennessy, E. T.; Betley, T. A. J. Am. Chem. Soc.
2011, 133, 4917−4923. (b) Hennessy, E. T.; Betley, T. A. Science
2013, 340, 591−595.
(11) (a) Liu, Y.; Che, C.-M. Chem.Eur. J. 2010, 16, 10494−10501.
(b) Wang, Z.; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2008, 10,
1863−1866.
method38 and observing its resulting H NMR spectrum in C6D6 in
1
the presence of 1 equiv of [Cl2NN]Cu (Figure S13 in the Supporting
Information).
Computational Methods. All computations employed the
Gaussian 09 program.39 Hybrid quantum mechanics/molecular
mechanics (QM/MM) calculations on full experimental chemical
models utilize the BP8640 density functional for the QM region in
conjunction with the 6-311+G(d) Pople basis set, which is a triple-ζ
basis set augmented by diffuse and polarization functions on main
group elements, and an f-polarization function on copper. The classical
MM region was modeled by the Universal Force Field41 (UFF) and
contained the 2,6-dichloropylphenyl and methyl substituents of the β-
diketiminate ligand. The remainder of the complex and ligands, as well
as substrate molecules, were modeled at the aforementioned BP86/6-
311+G(d) level of theory. The ONIOM methodology of Svensson et
al. was used for all QM/MM simulations.42
Open and closed shell species were modeled within the unrestricted
and restricted Kohn−Sham formalisms, respectively. All geometry
optimizations were conducted without symmetry constraint using
gradient methods. The energy Hessian was evaluated at all stationary
points to designate them as either minima or transition states at the
pertinent levels of theory. Free energies collected in Table S4 in the
Supporting Information are reported at 298.15 K and 1 atm and are
calculated with unscaled vibrational frequencies.
Spin density calculations and plots for [Cl2NN]Cu-NHAr (4−6)
collected in Table 3 and illustrated in Figure 4 were generated with
ADF43 (ADF 2007.1 BP/ZORA/TZ2P(+)) by optimizing coordinates
obtained above. Slater-type orbital (STO) basis sets employed for H,
C, and N atoms were of triple-ζ quality augmented with two
polarization functions (ZORA/TZ2P) while an improved triple-ζ basis
set with two polarization functions (ZORA/TZ2P+) was employed for
the Cu atom. Scalar relativistic effects were included by virtue of the
zero order regular approximation (ZORA). The 1s electrons of C and
N as well as the 1s−2p electrons of Cu were treated as frozen core.
ASSOCIATED CONTENT
■
S
* Supporting Information
Complete synthetic and kinetics details, additional character-
ization data for compounds 4−6 including EPR spectra,
computational methods, X-ray details with fully labeled thermal
ellipsoid plots for 4−6. The full citation for Gaussian 09.
Crystallographic information in CIF format for compounds 4−
6. This material is available free of charge via the Internet at
(12) (a) Lyaskovskyy, V.; Olivos Suarez, A. I.; Lu, H.; Jiang, H.;
Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264−12273.
(b) Caselli, A.; Gallo, E.; Fantauzzi, S.; Morlacchi, S.; Ragaini, F.;
Cenini, S. Eur. J. Inorg. Chem. 2008, 3009−3019. (c) Cenini, S.; Gallo,
E.; Penoni, A.; Ragaini, F.; Tollari, S. Chem. Commun. 2000, 2265−
2266. (d) Lu, H.; Subbarayan, V.; Tao, J.; Zhang, X. P. Organometallics
2010, 29, 389−393. (e) Lu, H.; Tao, J.; Jones, J. E.; Wojitas, L.; Zhang,
X. P. Org. Lett. 2010, 12, 1248−1251. (f) Ruppel, J. V.; Kamble, R. M.;
Zhang, X. P. Org. Lett. 2007, 9, 4889−4892.
AUTHOR INFORMATION
■
(13) (a) Díaz-Requejo, M. M.; Belderraín, T. R.; Nicasio, M. C.;
Corresponding Authors
Trofimenko, S.; Per
12079. (b) Fructos, M. R.; Trofimenko, S.; Días-Requejo, M. M.;
́
ez, P. J. J. Am. Chem. Soc. 2003, 125, 12078−
Per
́
ez, P. J. J. Am. Chem. Soc. 2006, 128, 11784−11791. (c) Hamilton,
10939
dx.doi.org/10.1021/ja5026547 | J. Am. Chem. Soc. 2014, 136, 10930−10940