Journal of the American Chemical Society
Page 4 of 6
mation: Carbon–Carbon Bond Forming Reactions by Transi-
Scheme 6. Carboxylation of Hydrocarbons 31 and 33
tion-Metal Catalysts. Chem. Commun. 2012, 48, 9956-9964.
(e) Zhang, L.; Hou, Z. N-Heterocyclic Carbene (NHC)–
Copper-Catalyzed Transformation of Carbon Dioxide. Chem.
Sci. 2013, 4, 3395-3403. (f) Liu, Q.; Wu, L.; Jackstell, R.;
Beller, M. Using Carbon Dioxide as a Building Block in Or-
ganic Synthesis. Nat. Commun. 2015, 6, 5933. (g) Gui, Y.-
Y.; Zhou, W.-J.; Ye, J.-H. Yu, D.-G. Photochemical Car-
boxylation of Activated C(sp3)–H Bonds with CO2.
ChemSusChem 2017, 10, 1337. (h) Tortajada, A.; Francisco,
J.-H.; Börjesson, M.; Moragas, T.; Martin, R. Transition-
Metal-Catalyzed Carboxylation Reactions with Carbon Di-
oxide. Angew. Chem. Int. Ed. 2018, 57, 15948-15982. (i)
Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. C–H Bond Car-
boxylation with Carbon Dioxide. ChemSusChem 2019, 12,
6-39. (j) Yeung, C. S. Photoredox Catalysis as a Strategy for
CO2 Incorporation: Direct Access to Carboxylic Acids from
a Renewable Feedstock. Angew. Chem. Int. Ed. 2019, 58,
5492-5502. (k) Mita, T.; Sato, Y. Syntheses of a-Amino Ac-
ids by Using CO2 as a C1 Source. Chem. Asian J. 2019, 14,
2038-2047.
1
2
3
4
5
6
7
8
UV light (365 nm)
ketone 29 (0.10 mmol)
Ni(NO3)2·6H2O (0.01 mmol)
bpy 30 (0.02 mmol)
t-BuOK (0.40 mmol)
CO2
+
(1 atm)
CO2H
t-BuOH (4 mL), rt, 3 h
H
32 0.10 mmol
(10 equiv to Ni)
31 (1 mL)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CH3
CH3
UV light (365 nm)
CO2H
ketone 29 (0.10 mmol)
Ni(NO3)2·6H2O (0.01 mmol)
bpy 30 (0.02 mmol)
34
35
CH3
CH3
33 (1 mL)
CH3
CO2H
t-BuOK (0.40 mmol)
+
t-BuOH (4 mL), rt, 3 h
CO2
(1 atm)
CO2H
CH3
CH3
(2) For catalytic reactions: (a) Ishida, N.; Masuda, Y.; Uemoto,
S.; Murakami, M. A Light/Ketone/Copper System for Car-
boxylation of Allylic C–H Bonds of Alkenes with CO2.
Chem. Eur. J. 2016, 22, 6524-6527. (b) Michigami, K.; Mita,
T.; Sato, Y. Cobalt-Catalyzed Allylic C(sp3)–H Carboxyla-
tion with CO2. J. Am. Chem. Soc. 2017, 139, 6094-6097.
For an example using a stoichiometric amount of an alumi-
num reagent: (c) Tanaka, S.; Watanabe, K.; Tanaka, Y.; Hat-
tori, T. EtAlCl2/2,6-Disubstituted Pyridine-Mediated Car-
boxylation of Alkenes with Carbon Dioxide. Org. Lett. 2016,
18, 2576-2579.
(3) For a catalytic reaction: (a) Suga, T.; Mizuno, H.; Takaya, J.;
Iwasawa, N. Direct Carboxylation of Simple Arenes with
CO2 through a Rhodium Catalyzed C–H Bond Activation.
Chem. Commun. 2014, 50, 14360-14363. For examples us-
ing a stoichiometric amount of Lewis acids: (b) Suzuki, Y.;
Hattori, T.; Okuzawa, T.; Miyano, S. Lewis Acid-Mediated
Carboxylation of Fused Aromatic Compounds with Carbon
Dioxide. Chem. Lett. 2002, 31, 102-103. (c) Olah, G. A.;
Török, B.; Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul, G.;
Prakash, G. K. S. Efficient Chemoselective Carboxylation of
Aromatics to Arylcarboxylic Acids with a Superelectrophil-
ically Activated Carbon Dioxide–Al2Cl6/Al System. J. Am.
Chem. Soc. 2002, 124, 11379-11391. (d) Schäfer, A.; Saak,
W.; Haase, D.; Müller T. Silyl Cation Mediated Conversion
of CO2 into Benzoic Acid, Formic Acid, and Methanol. An-
gew. Chem. Int. Ed. 2012, 51, 2981-2984.
36
total 0.08 mmol
(8 equiv to Ni)
34:35:36 = 1:8:3
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website.
Results of optimization and details of experimental proce-
dures including spectroscopic data of new compounds
(PDF)
AUTHOR INFORMATION
Corresponding Authors
*naisida@sbchem.kyoto-u.ac.jp
*murakami@sbchem.kyoto-u.ac.jp
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(4) For catalytic reactions: (a) Lejkowski, M. L.; Lindner, R.;
́
Kageyama, T.; Bodizs, G. É.; Plessow, P. N.; Müller, I. B.;
This work was supported by JSPS KAKENHI Grant Num-
bers 15H05756 (M.M.), 18H04648 (N.I.) (Hybrid Cataly-
sis), 19K15562 (Y.M.), JST ACT-C Grant Number
JPMJCR12Z9 (M.M.), Yazaki Memorial Foundation for
Science and Technology (N.I.), and Naohiko Fukuoka Me-
morial Foundation (N.I.).
Schäfer, A.; Rominger, F.; Hofmann, P.; Futter, C.; Schunk,
S. A.; Limbach, M. The First Catalytic Synthesis of an Acry-
late from CO2 and an Alkene -- A Rational Approach. Chem.
Eur. J. 2012, 18, 14017−14025. (b) Hendriksen, C.; Pidko, E.
A.; Yang, G.; Schäffner, B.; Vogt, D. Catalytic Formation of
Acrylate from Carbon Dioxide and Ethene. Chem. Eur. J.
2014, 20, 12037−12040. (c) Manzini, S.; Huguet, N.; Trapp,
O.; Schaub, T. Palladium- and Nickel-Catalyzed Synthesis
of Sodium Acrylate from Ethylene, CO2, and Phenolate Ba-
ses: Optimization of the Catalytic System for a Potential
Process. Eur. J. Org. Chem. 2015, 7122−7130. (d) Hopkins,
M. N.; Shimmei, K.; Uttley, K. B.; Bernskoetter, W. H. Syn-
REFERENCES
(1) Recent reviews: (a) Riduan, S. N.; Zhang, Y. Recent Devel-
opments in Carbon Dioxide Utilization under Mild Condi-
tions. Dalton Trans. 2010, 39, 3347. (b) Huang, K.; Sun, C.-
L.; Shi, Z.-J. Transition-Metal-Catalyzed C–C Bond For-
mation through the Fixation of Carbon Dioxide. Chem. Soc.
Rev. 2011, 40, 2435-2452. (c) Cokoja, M.; Bruckmeier, C.;
Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of
Carbon Dioxide with Homogeneous Transition-Metal Cata-
lysts: A Molecular Solution to a Global Challenge? Angew.
Chem. Int. Ed. 2011, 50, 8510-8537. (d) Tsuji, Y.; Fujihara,
T. Carbon Dioxide as a Carbon Source in Organic Transfor-
thesis
and
Reactivity
of
1,2-Bis(di-iso-
propylphosphino)benzene Nickel Complexes: A Study of
Catalytic CO2 −Ethylene Coupling. Organometallics 2018,
37, 3573−3580. (e) Ito, T.; Takahashi, K.; Iwasawa, N. Reac-
tivity of a Ruthenium(0) Complex Bearing a Tetradentate
Phosphine Ligand: Applications to Catalytic Acrylate Salt
Synthesis from Ethylene and CO2, Organometallics 2019, 38,
205-209.
ACS Paragon Plus Environment