M. D. Bhor et al. / Tetrahedron Letters 49 (2008) 6475–6479
6479
responding nitrile after hydrogenation in good yield (entry 3). Ben-
zophenone, cinnamaldehyde, acetophenone and cyclohexanone
were converted to their respective nitriles, yields of 58% to 78%
16. Olah, G. A.; Narang, S. C.; Gupta, B. G. B.; Malhotra, R. J. Org. Chem. 1979, 44,
247–1251.
1
1
1
7. Haynes, R. K.; Holden, M. Aust. J. Chem. 1982, 35, 517.
8. Di Deo, M.; Marcantoni, E.; Torregiani, E.; Bartoli, G.; Bellucci, M. C.; Bosco, M.;
Sambri, L. J. Org. Chem. 2000, 65, 2830–2833.
(Table 4, entries 4–7). Similar to iodides, cyanation of benzylic
1
2
9. Firouzabadi, H.; Iranpoor, N.; Jafarpour, M. Tetrahedron Lett. 2004, 45, 7451–
alcohols proceeded smoothly giving high yields of benzylic nitriles
compared to those of the aliphatic nitriles of cinnamaldehyde and
cyclohexanone.
In conclusion, a structurally well-defined O-containing transi-
3
tion metal complex Ru(TMHD) was found to show good catalytic
activity in hydrogenation, iodination and cyanation reactions un-
der mild conditions in a sequential one-pot fashion. Alkyl iodides
and nitriles were obtained in good to high yields from carbonyl
compounds without isolation of the intermediate alcohols. The cat-
alyst has high affinity for benzylic alcohols and tolerates a range of
substituents.
7454.
0. Iranpoor, N.; Firouzabadi, H.; Aghapour, Gh.; Vaezzadeh, A. R. Tetrahedron
2002, 58, 8689–8693.
2
2
1. Falck, J. R.; Manna, S. Synth. Commun. 1985, 15, 663–668.
2. Joseph, R.; Pallan, P.; Sudalai, A.; Ravindranathan, T. Tetrahedron Lett. 1995, 36,
6
09–612.
23. Tajbakhsh, M.; Hosseinzadeh, R.; Lasemi, Z. Synlett 2004, 635–638.
4. (a) Mitsunobu, O. Synthesis 1981, 1–28; (b) Hughes, D. L. Org. React. 1992,
2, 358–359; (c) Loibner, H.; Zbiral, E. Helv. Chim. Acta 1976, 59, 2100–
113.
2
4
2
25. (a) Bogdan, K. W. Synth. Commun. 1993, 23, 2481–2484; (b) Aesa, M. C.; Baan,
G.; Novak, L.; Szantay, C. Synth. Commun. 1995, 25, 2575–2578.
26. Brett, D.; Dowine, I. M.; Lee, J. B. J. Org. Chem. 1967, 32, 855–856.
27. Mizuno, A.; Hamada, Y.; Shioiri, T. Synthesis 1980, 1007–1009.
28. Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Nowrouzi, N. J. Org. Chem. 2004,
69, 2562–2564.
References and notes
29. (a) Davis, R.; Untch, K. G. J. Org. Chem. 1981, 46, 2985–2987; (b) Kanai, T.;
Kanagawa, Y.; Ishii, Y. J. Org. Chem. 1990, 55, 3274–3277.
1
.
(a) Chambers, R. D.; James, S. R. In Comprehensive Organic Chemistry; Barton, D.
H. R., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 1, p 493; (b)
Bohlmann, R. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon Press: Oxford, 1991; Vol. 6, pp 203–223; (c) Hudlicky, M.; Hudlicky,
T. In Chemistry of Functional Groups; Patai, S., Rappoport, Z., Eds.; Supplement D;
Wiley: New York, 1983; p 1021.
30. Soltani Rad, M. N.; Nezhad, A. K.; Behrouz, S.; Faghihi, M. A. Tetrahedron Lett.
2007, 48, 6779–6784.
3
3
3
1. Iida, S.; Togo, H. Synlett 2007, 407–410.
2. Iida, S.; Togo, H. Synlett 2005, 1456–1458.
3. (a) Nandurkar, N. S.; Bhanage, B. M. Tetrahedron 2008, 64, 3655–3660; (b)
Tambade, P. J.; Patil, Y. P.; Nandurkar, N. S.; Bhanage, B. M. Synlett 2008, 886–
2.
3.
4.
5.
6.
(a) Reinhard, R.; Schmidt, B. F. J. Org. Chem. 1998, 63, 2434–2441; (b) Smith, T.
H.; Fujiwara, A. N.; Henry, D. W. J. Med. Chem. 1979, 22, 40–44.
Loksha, Y. M.; El-Badawi, M. A.; El-Barbary, A. A.; Pedersen, E. B.; Nielsen, C.
Arch. Pharm. 2003, 336, 175–180.
888; (c) Nandurkar, N. S.; Bhanushali, M. J.; Bhor, M. D.; Bhanage, B. M.
Tetrahedron Lett. 2007, 48, 6573–6576; (d) Nandurkar, N. S.; Bhanushali, M. J.;
Bhor, M. D.; Bhanage, B. M. Tetrahedron Lett. 2008, 49, 1045–1048; (e) Patil, Y.
P.; Tambade, P. J.; Nandurkar, N. S.; Bhanage, B. M. Catal. Commun. 2008, 9,
Andrus, M. B.; Hicken, E. J.; Stephens, J. C.; Bedke, D. K. J. Org. Chem. 2005, 70,
2068–2072.
9
470–9479.
3
3
4. (a) Bhor, M. D.; Bhanushali, M. J.; Nandurkar, N. S.; Bhanage, B. M. Tetrahedron
Lett. 2008, 49, 965–969; (b) Bhor, M. D.; Bhanushali, M. J.; Nandurkar, N. S.;
Bhanage, B. M. Catal. Commun. 2007, 8, 2064–2068; (c) Bhor, M. D.; Panda, A.
G.; Jagtap, S. R.; Bhanage, B. M. Catal. Lett. 2008, 124, 157–164.
DeGraw, J. I.; Colwell, W. T.; Crase, J.; Smith, R. L.; Piper, J. R.; Waud, W. R.;
Sirotnak, F. M. J. Med. Chem. 1997, 40, 370–376.
(a) Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005,
44, 5188–5240; (b) Serrano, J. L.; Sierra, T.; Gonzalez, Y.; Balm, C.; Weickhardi,
5. Typical procedure for the hydrogenation of carbonyl compounds: To a 100 ml high
K.; Magnus, A.; Moll, G. J. Am. Chem. Soc. 1995, 117, 8312–8321; (c)
Jnaneshwara, G. K.; Deshpande, V. H.; Lalithambika, M.; Ravindranathan, T.;
Bedekar, A. V. Tetrahedron Lett. 1998, 39, 459–462; (d) Diana, G. D.; Cutcliffe, D.;
Volkots, D. L.; Mallamo, J. P.; Bialey, T. R.; Vescio, N.; Oglesby, R. C.; Nitz, T. J.;
Wetzel, J.; Giranda, V.; Pevear, D. C.; Dutko, F. J. J. Med. Chem. 1993, 36, 3240–
pressure reactor, carbonyl compound (5 mmol), Ru(TMHD)
3
catalyst (33 mg,
1
mol %) and THF (20 ml) were added. Hydrogen (400 psi) was then charged
into the reactor, which was heated to 80 °C for the desired time (Table 2). The
reactor was cooled and the remaining hydrogen was carefully vented off. The
reaction mixture was analyzed by GC, and the products were characterized by
GC–MS and by comparison with authentic samples.
3
250.
7
.
(a) Toland, W. G. J. Org. Chem. 1962, 27, 869–871; (b) Gelas-Mialhe, Y.; Vessiere,
R. Synthesis 1980, 1005–1007; (c) Das, B.; Madhusudhan, P.; Venkataiah, B.
Synlett 1999, 1569–1570; (d) Karmarkar, S. N.; Kelkar, S. L.; Wadia, M. S.
Synthesis 1985, 510–512.
36. Typical procedure for the synthesis of alkyl iodides: The reaction mixture after
hydrogenation was transferred into a two-necked flask and sodium iodide
(
1.5 g, 10 mmol) was added. The resulting mixture was stirred at 80 °C for the
desired time (Table 3). The reaction mixture was cooled and treated with aq
sodium dithionite solution and the product was extracted with ethyl acetate.
The extracted product was analyzed and characterized by GC–MS. The product
could be isolated easily after removal of the solvent in vacuo.
8
9
.
.
Hooz, J.; Linke, S. J. Am. Chem. Soc. 1968, 90, 6891–6892.
Vankar, Y. D.; Rao, C. T. Tetrahedron Lett. 1985, 26, 2717–2720.
1
1
0. Hayat, S.; Rahman, A.-U.; Khan, K. M.; Choudhary, M. I.; Maharvi, G. M.; Ullah,
Z.; Bayer, E. Synth. Commun. 2003, 33, 2531–2540.
1. Bandgar, B. P.; Sadavarte, V. S.; Uppalla, L. S. Tetrahedron Lett. 2001, 42, 951–
37. Typical procedure for the synthesis of alkyl nitriles: The reaction mixture after
hydrogenation was transferred into a two-necked flask and cuprous cyanide
9
53.
(
896 mg, 10 mmol) was added. The resulting mixture was stirred at 80 °C for
12. Jung, M. E.; Ornstein, P. L. Tetrahedron Lett. 1977, 31, 2659–2662.
13. Fernandez, I.; Garcia, B.; Munoz, S.; Pedro, J. R.; Salud, R. Synlett 1993, 489–490.
14. Martinez, A. G.; Alvarez, R. M.; Vilar, E. T.; Fraile, A. G.; Barnica, J. O.; Hanack,
M.; Subramanian, L. R. Tetrahedron Lett. 1987, 28, 6441–6442.
the desired time (Table 4). The reaction mixture was cooled, diluted with water
and extracted with ethyl acetate. The extracted product was analyzed and
characterized by GC–MS. The organic layer was dried and evaporated under
vacuo to afford the product in good yield.
1
5. Stone, H.; Shechter, H. Org. Synth. 1963, 4, 323.