40
S. Bhogeswararao, D. Srinivas / Journal of Catalysis 285 (2012) 31–40
[5] K. Weissermel, H.J. Arpe, Industrial Organic Chemistry, Verlag Chemie,
100
80
60
40
20
Pd(2%)/CeO -ZrO
2
HCA
PPL
2
Weinheim, 1978.
[6] S. Mahmoud, A. Hammoudeh, S. Gharaibeh, J. Melsheimer, J. Mol. Catal. A:
Chem. 178 (2002) 161.
[7] J. C Serrano-Ruiz, J. Luettich, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J.
Catal. 241 (2006) 45.
Others
c
4
2
0
100
90
80
[8] P. Kluson, L. Cerveny, Appl. Catal. 128 (1995) 13.
[9] X.F. Chen, H.X. Li, Y.P. Xu, M.H. Wang, Chin. Chem. Lett. 13 (2002) 107.
[10] P. Claus, A. Brülckner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122 (2000)
11430.
[11] F. Delbecq, P. Sautet, J. Catal. 152 (1995) 217.
[12] T. Vergunst, F. Kapteijn, J.A. Moulijn, Catal. Today 66 (2001) 381.
[13] A. Dandekar, M.A. Vannice, J. Catal. 183 (1999) 344.
[14] B. Campo, M. Volpe, S. Ivanova, R. Touroude, J. Catal. 242 (2006) 162.
[15] K. Liberkova, R. Touroude, D.Y. Murzin, Chem. Eng. Sci. 57 (2002) 2519.
[16] S. Galvagne, A. Donato, G. Neri, R. Pietrepaele, C. Capannolli, J. Mol. Catal. 78
(1993) 227.
a
b
d
CAL
d
b
c
a
Pt(5%)/CeO -ZrO
2
2
PPL
4
2
0
HCA
90
30
40
50
60
70
80
100
[17] S. Galvagne, C. Milone, A. Donato, G. Neri, R. Pietropaolo, Catal. Lett. 17 (1993)
55.
CA conversion (wt%)
[18] J.Q. Wang, Y.Z. Wang, S.H. Zhe, M.H. Qiao, H.X. Li, K.N. Fan, Appl. Catal. A: Gen.
272 (2004) 29.
[19] D. Richard, J. Ockelford, A. Giroir-Fendler, P. Gallezot, Catal. Lett. 3 (1989) 53.
[20] E.V. Romos-Fernández, J. Ruiz-Martínez, J.C. Serrano-Ruiz, J. Silvestre-Albero,
A. Sepúlveda-Escribano, F. Rodriguez-Reinoso, Appl. Catal. A: Gen. 402 (2011)
50.
[21] J. Teddy, A. Falqui, A. Corrias, D. Carta, P. Lecante, I. Gerber, P. Serp, J. Catal. 278
(2011) 59.
[22] M. Englisch, V.S. Ranade, J.A. Lercher, J. Mol. Catal. A: Chem. 121 (1997) 62.
[23] B. Coq, P.S. Kubhar, C. Moreau, P. Moreau, F. Figueras, J. Phys. Chem. 98 (1994)
10180.
Fig. 10. Comparative catalytic activity of CeO2–ZrO2-supported Pd and Pt catalysts.
Reaction conditions: Catalyst (0.05 g), cinnamaldehyde (CA, 4 g), solvent – ethanol
(40 ml) for Pd and iso-propanol for Pt catalysts, alkali additive = 0.02 g of NaOH in
10 ml water, H2 pressure = 20 bar, reaction temperature = 50 °C (for Pd) and 25 °C
(for Pt). HCA = hydrocinnamaldehyde, PPL = 3-phenylpropanol, CAL = cinnamyl
alcohol, others include acetals; a = 1 (for Pd) and 2 h (for Pt), b = 4 h, c = 6 h, and
d = 8 h.
While the Pd catalyst is selective mainly for HCA at all conversion
levels, Pt catalysts are selective for CAL. In other words, the nature
of the metal influences the product selectivity. Delbecq and Sautet
[11] reported that metal selectivities can be rationalized in terms
of the different radial expansion of their d bands; the larger the
band, the stronger the four-electron repulsive interactions with
the C@C bond and the lower the probability of its adsorption. In-
deed, the d band width increases in the series Pd < Pt < Ir, Os,
which accounts well for the selectivities observed over Pd and Pt
catalysts. The crystallite size (5–12 nm), preferential exposure of
[111] plane, high dispersion (40.5%), high electron density, strong
metal–support interactions, and facile low-temperature reducibil-
ity of Pt are the unique features that made Pt/CeO2–ZrO2 as a
highly efficient and selective hydrogenation catalyst.
[24] S. Bhogeswararao, D. Srinivas, Catal. Lett. 140 (2010) 55.
[25] M. Shen, J. Wang, J. Shang, Y. An, J. Wang, W. Wang, J. Phys. Chem. C 113 (2009)
1543.
[26] M. Shen, M. Yang, J. Wang, J. Wen, M. Zhao, W. Wang, J. Phys. Chem. C 113
(2009) 3212.
[27] M. Zhao, S. Chen, X. Zhang, M. Gong, Y. Chen, J. Rare Earths 27 (2009) 728.
[28] P. Bera, K.C. Patil, V. Jayaram, G.N. Subbanna, M.S. Hegde, J. Catal. 186 (2000)
293.
[29] H. Wang, Y. Chen, Q. Zhang, Q. Zhu, M. Gong, M. Zhao, J. Nat. Gas Chem. 18
(2009) 211.
[30] L. Vivier, D. Duprez, ChemSusChem 3 (2010) 654.
[31] M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihana, M. Yoshimura, Phys.
Rev. B: Condens. Matter 51 (1995) 8018.
[32] S. Otsuka-Yao-Matsuo, T. Omata, N. Izu, H. Kishimoto, J. Solid State Chem. 138
(1998) 47.
[33] T. Omata, H. Kishimoto, S. Otsuka-Yao-Matsuo, N. Ohtori, N. Umesaki, J. Solid
State Chem. 147 (1999) 573.
[34] G. Li, B. Zhao, Q. Wang, R. Zhou, Appl. Catal. B: Environ. 97 (2010) 41.
[35] A. Trovarelli, Catal. Rev. 38 (1996) 439.
[36] A. Martínez-Arias, M. Fernández-García, V. Ballesteros, L.N. Salamanca, J.C.
Conesa, C. Otero, J. Soria, Langmuir 15 (1999) 4796.
[37] A. Jung, A. Jess, T. Schubert, W. Schütz, Appl. Catal. A: Gen. 362 (2009) 95.
[38] P. Hollins, Surf. Sci. Rep. 16 (1992) 51.
4. Conclusions
Intramolecular liquid phase hydrogenation of cinnamaldehyde
was investigated over Pt (5 wt%) supported on CeO2, ZrO2, and
CeO2–ZrO2 catalysts. Cinnamyl alcohol was obtained as the selec-
tive product. Structural and electronic factors, alkali promoters,
and solvent influenced the catalytic properties. Acidity of the sup-
port (due to the presence of ZrO2 component) and higher electron
density at Pt (due to CeO2 component) are responsible for the high-
er catalytic activity and selectivity of Pt supported on CeO2–ZrO2
composite material. These catalysts were highly active and selec-
tive even at 25 °C and found to be superior to most of the hitherto
known supported Pt catalysts.
ˇ
[39] A. Martínez-Arias, J.M. Coronado, R. Cataluna, J.C. Conesa, J. Soria, J. Phys.
Chem. B 102 (1998) 4357.
[40] J.R. Croy, S. Mostafa, L. Hickman, H. Heinrich, B. Roldan Cuenya, Appl. Catal. A:
Gen. 350 (2008) 207.
[41] M. Dömök, A. Oszkó, K. Baán, I. Sarusi, A. Erdöhelyi, Appl. Catal. A: Gen. 383
(2010) 33.
[42] Z.-T. Liu, C.-X. Wang, Z.-W. Liu, J. Lu, Appl. Catal. A: Gen. 344 (2008) 114.
[43] E. Bekyarova, P. Fornasiero, J. Kašpar, M. Graziani, Catal. Today 45 (1998) 79.
[44] P. Gallezot, A. Giroir-Fendler, D. Richard, Catal. Lett. 5 (1990) 169.
[45] G. Szöllösi, B. Török, L. Baranyi, M. Bartók, J. Catal. 179 (1998) 619.
[46] D. Manikandan, D. Divakar, T. Sivakumar, Catal. Commun. 8 (2007) 1781.
[47] C.-Y. Hsu, T.-C. Chiu, M.-H. Shih, W.-J. Tsai, W.-Y. Chen, C.-H. Lin, J. Phys. Chem.
C 114 (2010) 4502.
[48] N. Mahata, F. Conçalves, M. Fernando, R. Pereira, J.L. Figueiredo, Appl.Catal. A:
Gen. 339 (2008) 159.
[49] E.V. Ramos-Fernández, A.F.P. Ferreira, A. Sepúlveda-Escribano, F. Kapteijn, F.
Rodríguez-Reinoso, J. Catal. 258 (2008) 52.
Acknowledgment
[50] A.J. Plomp, D.M.P. van Asten, A.M.J. van der Eerden, P. Mäki-Arvela, D.Y.
Murzin, K.P. de Jong, J.H. Bitter, J. Catal. 263 (2009) 145.
[51] A. Giroir-Fendler, D. Richard, P. Gallezot, Catal. Lett. 5 (1990) 175.
[52] D. Loffreda, F. Delbecq, F. Vigné, P. Sautet, Angew. Chem. Ind. Ed. 44 (2005)
5279.
[53] D. Loffreda, F. Delbecq, F. Vigné, P. Sautet, J. Am. Chem. Soc. 128 (2006) 1316.
[54] J.C. Serrano-Ruiz, A. López-Cudero, J. Solla-Gullón, A. Sepúlveda-Escribano, A.
Aldaz, F. Rodríguez-Reinoso, J. Catal. 253 (2008) 159.
S.B. acknowledges the Council of Scientific and Industrial
Research, New Delhi for the award of Senior Research Fellowship.
References
[1] P. Gallezot, D. Richard, Catal. Rev. Sci. Eng. 40 (1998) 81.
[2] P. Claus, Topic Catal. 5 (1998) 51.
[3] U.K. Singh, M.A. Vannice, Appl. Catal. A: Gen. 213 (2001) 1.
[4] P. Mäki-Arvela, J. Hájek, T. Salmi, D.Y. Murzin, Appl. Catal. A: Gen. 292 (2005) 1.
[55] R.J. Madon, J.P. O-Connell, M. Boudart, AIChE J. 24 (1978) 904.
[56] R.J. Madon, E. Iglesia, J. Mol. Catal. A: Chem. 163 (2000) 189.