8620 Liu et al.
Asian J. Chem.
Au0 (83.8 and 87.4 eV) andAuδ+ (85.1 and 88.6 eV)33. Whereas
forAuNPs/TiO2/dried,AuNPs/TiO2/reduced andAu/TiO2-DP,
only the Au 4f peaks assigned to metallic Au were detected.
Compared with the Au 4f binding energies (BEs) for AuNPs,
the three TiO2 supported gold catalysts showed lower BEs
corresponding to Au0. It should be noted that the treatment of
AuNPs/TiO2/dried sample in H2 (i.e.AuNPs/TiO2/reduced) led
to a significantly negative BEs shift of the Au 4f peaks. Au/
TiO2-DP showed the most negative shift compared withAuNPs
(1.0 eV for Au 4f7/2 and 1.2 eV forAu 4f5/2). The negative shift
ofAu 4f is due to an electron transfer from the reduced support
to gold, which lead to the increase in the electron density on
gold and can create more electron-enriched gold particles5.
Combined with the catalytic test results as shown in Table-1,
it can be proposed that the high selectivity of AuNPs/TiO2/
reduced and Au/TiO2-DP toward cinnamyl alcohol is mainly
attributed to the electron transfer from the reduced support to
gold. This is in agreement with the results reported by Milone
et al.14,15 in studying the hydrogenation of benzalacetone and
cinnamaldehyde over iron oxides supported gold catalysts.
4. J.E. Bailie, H.A. Abdullah, J.A. Anderson, C.H. Rochester, N.V.
Richardson, N. Hodge, J. G. Zhang, A. Burrows, C.J. Kiely and G.J.
Hutchings, Phys. Chem. Chem. Phys., 3, 4113 (2001).
5. S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck,A. Brückner, J. Radnik,
H. Hofmeister and P. Claus, Catal. Today, 72, 63 (2002).
6. C. Mohr, H. Hofmeister and P. Claus, J. Catal., 213, 86 (2003).
7. C. Mohr, H. Hofmeister, J. Radnik and P. Claus, J. Am. Chem. Soc.,
125, 1905 (2003).
8. J. Lenz, B.C. Campo, M.Alvarez and M.A.Volpe, J. Catal., 267, 50 (2009).
9. K.J. You, C.T. Chang, B.J. Liaw, C.T. Huang and Y.Z. Chen, Appl.
Catal. A, 361, 65 (2009).
10. H.Y. Chen, C.T. Chang, S.J. Chiang, B.J. Liaw and Y.Z. Chen, Appl.
Catal. A, 381, 209 (2010).
11. J.E. Bailie and G.J. Hutchings, Chem. Commun., 2151 (1999).
12. N. Abudukelimu, H.J. Xi, S.J. Qing, Y.B. Ma, Z.X. Gao and W.J. Eli,
Asian J. Chem., 24, 5341 (2012).
13. C. Milone, R. Ingoglia, A. Pistone, G. Neri, F. Frusteri and S. Galvagno,
J. Catal., 222, 348 (2004).
14. C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri and S. Galvagno,
J. Catal., 236, 80 (2005).
15. C. Milone, C. Crisafulli, R. Ingoglia, L. Schipilliti and S. Galvagno, Catal.
Today, 122, 341 (2007).
16. B.C. Campo, S. Ivanova, C. Gigola, C. Petit and M.A. Volpe, Catal.
Today, 133-135, 661 (2008).
17. P. Claus, Appl. Catal. A: Gen., 291, 222 (2005).
18. E. Bus, R. Prins and J.A. van Bokhoven, Catal. Commun., 8, 1397 (2007).
19. C. Milone, M.C. Trapani and S. Galvagno, Appl. Catal. A, 337, 163
(2008).
Conclusion
Our data showed that the selectivity of gold catalysts is
little dependent on the gold particle size, but is strongly af-
fected by the nature of the support in the liquid phase selec-
tive hydrogenation of cinnamaldehyde. Unsupported and in-
ert SiO2 supportedAuNPs as well asAuNPs/TiO2/dried selec-
tively hydrogenated the C=C bond. Whereas AuNPs/TiO2/re-
duced andAu/TiO2-DP exhibited good selectivity toward C=O
hydrogenation. Characterization results indicated an electron
transfer from the reduced TiO2 support to gold, which may be
the major factor for the enhanced selectivity toward cinnamyl
alcohol.
20. B. Campo, G. Santori, C. Petit and M. Volpe, Appl. Catal. A, 359, 79
(2009).
21. Q.Y. Yang, Y. Zhu, L. Tian, S.H. Xie, Y. Pei, H. Li, H.X. Li, M.H. Qiao
and K.N. Fan, Appl. Catal. A: Gen., 369, 67 (2009).
22. M.M. Wang, L. He, Y.M. Liu, Y. Cao, H.Y. He and K.N. Fan, Green.
Chem., 13, 602 (2011).
23. Y.X. Liu, L.F. Meng, Z.J. Wei and H.T. Shi, Chin. J. Catal., 32, 1269
(2011).
24. Y. Zhu, L. Tian, Z. Jiang, Y. Pei, S.H. Xie, M.H. Qiao and K.N. Fan, J.
Catal., 281, 106 (2011).
25. L.N. Protasova, E.V. Rebrov, H.E. Skelton, A.E.H. Wheatley and J.C.
Schouten, Appl. Catal. A, 399, 12 (2011).
26. E. Castillejos, E. Gallegos-Suarez, B. Bachiller-Baeza, R. Bacsa, P.
Serp, A. Guerrero-Ruiz and I. Rodriguez-Ramos, Catal. Commun., 22,
79 (2012).
ACKNOWLEDGEMENTS
27. M.S. Ide, B. Hao, M. Neurock and R.J. Davis, ACS Catal., 2, 671
(2012).
The authors gratefully acknowledged the financial support
provided by the National Natural Science Foundation of China
(No. 21106134 and 21276230) and Zhejiang Provincial Natural
Science Foundation of China (No.Y4100671 andY4090304).
28. M. Brust, D. Walker, D. Bethell, D.J. Schiffrin and R. Whyman, J.
Chem. Soc., Chem. Commun., 801 (1994).
29. Y.X. Liu, T.F. Xing, Z.J. Wei, X.N. Li and W. Yan, Catal. Commun.,
10, 2023 (2009).
30. H. Shi, N. Xu, D. Zhao and B.Q. Xu, Catal. Commun., 9, 1949 (2008).
31. K.M. Parida, N. Sahu, P. Mohapatra and M.S. Scurrell, J. Mol. Catal.
A: Chem., 319, 92 (2010).
REFERENCES
1. P. Gallezot and D. Richard, Catal. Rev. Sci. Eng., 40, 81 (1998).
2. P. Claus, Top. Catal., 5, 51 (1998).
32. M.A.R. Dewan, G.Q. Zhang and O. Ostrovski, Metall. Mater. Trans.
B, 40, 62 (2009).
33. E.D. Park and J.S. Lee, J. Catal., 186, 1 (1999).
3. P. Maki-Arvela, J. Hajek, T. Salmi and D.Y. Murzin, Appl. Catal. A,
292, 1 (2005).