T. E. Pickett, C. J. Richards / Tetrahedron Letters 42 (2001) 3767–3769
3769
Table 2. Results of Suzuki cross-couplings with 1
Chem., Int. Ed. Engl. 1998, 37, 3387; (c) Hartwig, J. F.;
Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.;
Alcazar-Roman, L. M. J. Org. Chem. 1999, 64, 5575; (d)
Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000,
122, 4020.
Entry
R
R1
Yielda (%)
1
2
3
4
5
p-NO2
H
o-Me
o-Me
o-OMe
H
o-Me
H
o-Me
o-Me
90
57
49
46
36
2. Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1998,
120, 7369.
3. (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed.
Engl. 1999, 38, 2413; (b) Wolfe, J. P.; Singer, R. A.;
Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999,
121, 9550; (c) Wolfe, J. P.; Tomori, H.; Sadighi, J. P.;
Yin, J.; Buchwald, S. L. J. Org. Chem. 2000, 65, 1158; (d)
Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. J.
Am. Chem. Soc. 2000, 122, 1360.
a As determined by GC.
example under the optimised conditions (Table 1, entry
1), 17% of 9 was present after only 10 minutes, and
51% after 1 h. Longer reaction times resulted in the
formation of palladium black in the reaction vessel, but
this did not effect the integrity of the ligand which
could be recovered in essentially quantitative yield.
Interestingly, despite the similarity of 1 to tris(ortho-
tolyl)phosphine, no palladacycles have yet been
observed.
4. Herrmann, W. A.; Brossmer, C.; Reisinger, C.-P.; Rier-
8
meier, T. H.; Ofele, K.; Beller, M. Chem. Eur. J. 1997, 3,
1357.
5. Allenmark, S. Tetrahedron Lett. 1974, 371.
6. Powell, M. T.; Porte, A. M.; Burgess, K. Chem. Commun.
1998, 2161.
In conclusion, we have demonstrated that a tris(2-
methylferrocenyl)phosphine is readily synthesised pro-
vided attention is paid to the absolute stereochemistry
of the 2-methylferrocenyl substituents. These result in
an efficient ligand promoting the Suzuki cross-coupling
of aryl chlorides under mild conditions, and both the
ferrocenyl group and the 2-methyl substituent are
required for activity. Given the recent interest in asym-
metric variants of this reaction,11 further work is on
going to explore the full utility of 1 and its derivatives.
7. Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse,
M. B. Synlett 1995, 74.
8. (a) Sammakia, T.; Latham, H. A.; Schaad, D. R. J. Org.
Chem. 1995, 60, 10; (b) Nishibayashi, Y.; Uemura, S.
Synlett 1995, 79; (c) Sammakia, T.; Latham, H. A. J.
Org. Chem. 1995, 60, 6002.
9. Data for 1: mp 238–240°C (found: C, 62.19; H, 5.26.
C33H33Fe3P·1/2H2O requires C, 62.21; H, 5.38); [h]2D0 −72
(c 0.22, CH2Cl2); lH (400 MHz, CDCl3) 2.35 (3H, s, Me),
3.73 (5H, s, C5H5), 4.24 (2H, t, J 2.3 Hz, 2×Fc), 4.33 (1H,
d, J 1.54 Hz, Fc); lC (100 MHz, CDCl3) 15.24 (d, J 14.4
Hz, Me), 68.41 (Fc), 69.27 (C5H5), 70.60 (d, J 5.2 Hz,
Fc), 71.07 (d, J 5.8 Hz, Fc), 81.19 (d, J 6.3 Hz, Fc-ipso),
89.38 (d, J 36.3 Hz, Fc-ipso); lP (122 MHz, CDCl3)
−72.6; m/z (APCI), 628 (M+, 100), 429 (M−2−MeFc,
82%).
Acknowledgements
We wish to thank Lancaster Synthesis and Cardiff
University for the provision of a studentship (TEP).
10. Prepared by electrophilic substitution of ferrocene with
Me2NPCl2: Sollott, G. P.; Peterson, W. R. J. Organomet.
Chem. 1969, 19, 143.
11. (a) Cammidge, A. N.; Cre´py, K. V. L. Chem. Commun.
2000, 1723; (b) Yin, J.; Buchwald, S. L. J. Am. Chem.
Soc. 2000, 122, 12051.
References
1. (a) Nishiyama, M.; Yamamoto, T.; Koie, Y. Tetrahedron
Lett. 1998, 39, 617; (b) Littke, A. F.; Fu, G. C. Angew.
.