E.V. Ramos-Fernández et al. / Journal of Catalysis 258 (2008) 52–60
59
Table 3
Best results reported recently for this reaction over Pt catalysts
Catalyst
Solvent
Reaction conditions
Conversion (%)
Selectivity (%)
Reference
Pt/montmorillonite
Pt/Na-montmorillonite
PtRu/carbon nanotubes
Isopropanol
Ethanol
Isopropanol
298 K, 4.0 MPa
373 K, 7 MPa
373 K, 2 MPa
95
65
80
95
80
93
Szollosi et al., 1998 [52]
Manikandan et al., 2007 [51]
Vu et al., 2006 [50]
Pt/Cr–ZnO
Isopropanol
383 K, 7 MPa
100
96
This work
Pt/Cr–ZnO. This indicates that the active sites formed in Pt/ZnO af-
ter this reduction treatment at low temperature are much more ac-
tive. For Pt/Cr–ZnO, the number of active sites is higher and, thus,
the overall activity is higher, but the intrinsic activity of the active
sites is lower. However the TOF values are similar after reduction
treatment at 623 K. This may be ascribed to different factors. On
one hand, the surface segregation of chromium cations after the
reduction treatments seems to avoid the migration of patches of
the ZnO support over the metal particles and, consequently, the
number of active sites remains higher. Furthermore, chromium ad-
dition enhances the support reducibility producing an increase in
the amount of metallic zinc, which favours the formation of alloy
phases, this also affecting the catalytic activity [21,48,49].
The results found have special relevance in terms of selectiv-
ity. It has been recently reported that this kind of catalysts show
high activity and selectivity towards the production of the unsatu-
rated alcohol [23] in the vapour phase selective hydrogenation of
crotonaldehyde. But the use of vapour phase reaction limits their
industrial applications. Thereby, it has been found that their good
catalytic properties are kept also when they are used in the liquid
phase and with a complex reaction such as the selective hydro-
genation of cinnamaldehyde. When the results obtained with these
catalysts are compared with those recently reported for supported
platinum catalysts, it can be seen that these catalysts present the
best selectivity found without the use additives to the reaction
medium (Table 3) [50–52]. The high selectivity is attributed to the
electronic donating interaction of the metallic zinc to the platinum,
this lowering the interaction of the olefinic double bond of the
aldehyde with the catalyst [11,14].
and European Commission (Contract No. NMP3-CT2004-500895
‘InsidePores’ Network of Excellence).
References
[1] M. De Bruyn, S. Coman, R. Bota, V.I. Parvulescu, D. De Vos, P.A. Jacobs, Angew.
Chem. 42 (2003) 5333.
[2] P. Gallezot, D. Richard, Rev.-Sci. Eng. 40 (1998) 81.
[3] A. Corma, L.T. Nemeth, M. Renz, S. Valencia, Nature 412 (2001) 423.
[4] A. Corma, M.E. Comine, L.T. Nemeth, S. Valencia, J. Am. Chem. Soc. 124 (2002)
3194.
[5] A. Corma, M.E. Domine, S. Valencia, J. Catal. 215 (2003) 294.
[6] A. Corma, H. Garcia, Chem. Rev. 103 (2003) 4307.
[7] J. Jeak, J.E. Germain, J. Catal. 65 (1980) 133.
[8] A. Giroir-Fendler, D. Richard, P. Gallezot, Stud. Surf. Sci. Catal. 41 (1988) 171.
[9] J.C.S. Wu, T.-S. Cheng, C.-L. Lai, Appl. Catal. A Gen. 314 (2006) 233.
[10] T.B.L. Marinelli, V. Ponec, J. Catal. 156 (1995) 51.
[11] J.L. Margitfalvi, I. Borbáth, M. Hegedus, A. Tompos, Catal. A Gen. 229 (2002) 35.
[12] J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J. Catal. 246
(2007) 158.
[13] J. Silvestre-Albero, J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Rei-
noso, Appl. Catal. A Gen. 292 (2005) 244.
[14] M. Consonni, D. Jokic, D.Y. Murzin, R. Touroude, J. Catal. 188 (1999) 165.
[15] P. Gallezot, A. Giroir-Fendler, D. Richard, Catal. Lett. 5 (1990) 164.
[16] D.G. Blackmond, R. Oukaci, B. Blanc, P. Gallezot, J. Catal. 131 (1991) 401.
[17] A. Giroir-Fendler, D. Richard, P. Gallezot, Stud. Surf. Sci. Catal. 41 (1988) 171.
[18] M.L. Toebes, T.A. Nijhuis, J. Hájek, J.H. Bitter, A.J. Van Dellen, D. Murzin, K.P. De
Jong, Chem. Eng. Sci. 60 (2005) 5682.
[19] M.L. Toebes, Y. Zhang, J. Hájek, T. Nijhuis, J.B. Bitter, A. Jos Van Dillen, D.Y.
Murzin, D.C. Koningsberger, K.P. De Jong, J. Catal. 226 (2004) 215.
[20] A. Dandekar, M.A. Vannice, J. Catal. 183 (1998) 344.
[21] M.A. Vannice, Top. Catal. 4 (1997) 241.
[22] A. Huidobro, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J. Catal. 212 (2002)
94.
[23] E.V. Ramos-Fernández, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, DOI:
[24] A. Sepúlveda-Escribano, F. Coloma, J. Silvestre-Albero, F. Rodríguez-Reinoso,
Appl. Catal. A Gen. 304 (2006) 159.
4. Conclusions
[25] J. Silvestre-Albero, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, J. Catal. 210
(2002) 127.
[26] A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, J. Catal. 178 (1998)
649.
[27] A. Sepúlveda-Escribano, J. Silvestre-Albero, F. Coloma, F. Rodríguez-Reinoso,
Stud. Surf. Sci. Catal. 130 (2000) 1013.
[28] S. Bernal, M.A. Cauqui, G.A. Cifredo, J.M. Gatica, C. Larese, J.A. Pérez-Omil, Catal.
Today 29 (1996) 77.
[29] B. Campo, M. Volpe, S. Ivanova, R. Touroude, J. Catal. 242 (2006) 162.
[30] K. Liberková, L. Cerveny, R. Touroude, Res. Chem. Intermed. 26 (2003) 609.
[31] K. Liberková, R. Touroude, J. Mol. Catal. A Chem. 180 (2002) 221.
[32] M. Ohta, Y. Ikeda, A. Igarashi, Appl. Catal. A Gen. 258 (2003) 153.
[33] D.A. Shirley, Phys. Rev. B 5 (1972) 4709.
[34] R.B. Kale, H. Yung-Jung, L. Yi-Feng, L. Shih-Yuan, Solid State Commun. 142
(2007) 302.
[35] J. Wang, Y. Wang, S. Xie, M. Qiao, H. Li, K. Fan, Appl. Catal. A Gen. 272 (2004)
29.
The addition of Cr(III) cations to ZnO used as support for Pt cat-
alysts in the selective hydrogenation of cinnamaldehyde generated
several modifications both in the support and in the catalyst be-
haviour: (i) ZnCr2O4 spinel (mixed oxide) was generated; (ii) the
textural properties (larger surface area and resistance against sin-
tering) were improved; (iii) the presence of chromium favoured
the reducibility of ZnO; (iv) Pt dispersion was increased. The cat-
alytic performance was enhanced with these modifications, result-
ing in a very active and selective catalyst. About 95% selectivity
towards cinnamylalcohol was obtained up to complete conversion.
This enhancement is ascribed to a favourable metal–support inter-
action induced by chromium addition and the higher reducibility
of ZnO. The reduction temperature controls both the catalytic ac-
tivity and the selectivity. After reduction treatment at low temper-
ature (473 K), a very active and selective (90–95%) catalyst was
obtained, while reduction at high temperature (623 K) decreased
the activity, especially for the Cr-free catalyst, but the selectivity
was slightly improved to 95%.
[36] X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, R.P.H. Chang, J. Cryst.
Growth 19 (2001) 123.
[37] J.A. Rodríguez, M. Kuhn, J. Chem. Phys. 102 (1995) 4279.
[38] A. Sepúlveda-Escribano, J.C. Serrano-Ruiz, G.W. Huber, M.A. Sanchez-Castillo,
J.A. Dumesic, F. Rodríguez-Reinoso, J. Catal. 241 (2006) 378.
[39] P. Concepción, A. Corma, J. Silvestre-Albero, V. Franco, J.Y. Chane-Ching, J. Am.
Chem. Soc. 126 (2004) 5523.
Acknowledgments
[40] L. Jing, D. Wang, B. Wang, S. Li, B. Xin, H. Fu, J. Sun, J. Mol. Catal. A Chem. 244
(2006) 193.
[41] W.E. Epling, G.B. Hoflund, D.M. Minahan, J. Catal. 175 (1998) 175.
[42] J. Silvestre-Albero, A. Corma, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso,
Appl. Catal. A Gen. 304 (2006) 159.
This work was supported from Ministerio de Educación y Cien-
cia, Spain (Projects BQU2003-06150 and NAN2004-09267-C03)