by rather sophisticated and tedious procedures (e.g., by the
1
3
reduction of trans-cinnamaldehyde or 3-phenylpropionyl
Scheme 1
1
4
chloride or its derivatives or by the oxidation of 3-aryl-
1
5
propanol ), which inhibits its wide applications. Therefore,
it is highly desirable to develop new, economic, and efficient
1
6
methodologies for the synthesis of 3-arylpropanal.
Recently, we reported the synthesis and application of a
class of new tetraphosphorus ligands (biphenyl-2,2′,6,6′-
tetrakis(dipyrrolylphosphoramidite)) (Figure 1), which shows
latter constitute an important class of anti-inflammatory drugs
and the linear aldehyde is widely used for the production of
detergents and plasticizers and in organic synthesis as an
11
important intermediate (for example, it can be used as key
starting material for the synthesis of enalapril, marketed by
1
2
Merck & Co. as a drug for lowering blood pressure ). In
the literature, 3-arylpropanal is usually obtained indirectly
Figure 1. Ligands used in this study.
(
3) For recent publications, see: (a) Breeden, S.; Cole-Hamilton, D. J.;
Foster, D. F.; Schwarz, G. J.; Wills, M. Angew. Chem. 2000, 39, 4272–
274; Angew. Chem., Int. Ed. 2000, 39, 4106-4108. (b) Dieguez, M.;
Pamies, O.; Ruiz, A.; Castillon, S.; Claver, C. Chem.sEur. J. 2001, 7, 3086–
094. (c) Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud,
high regioselectivity for the homogeneous isomerization-
17
hydroformylation of internal olefins. The high regioselec-
tivity prompted us to assess our ligands further in the
hydroformylation of styrene and its derivatives. Herein, we
disclose our recent studies on the hydroformylation of styrene
and its derivatives with unprecedented high linear selectivity.
Initially, we set out to identify the optimal conditions for
our ligands system. Some representative results are given in
Table 1. An increase in the temperature from 40 to 80 °C
led to improved activity and regioselectivity (Table 1, entries
4
3
K. A. J. Am. Chem. Soc. 2005, 127, 5040–5042. (d) Axtell, A. T.; Cobley,
C. J. J. Klosin; Whiteker, G. T.; Zanotti-Gerosa, A.; Abboud, K. A. Angew.
Chem. 2005, 117, 5984–5986; Angew. Chem., Int. Ed. 2005, 44, 5834-5838.
(
e) Huang, J.; Bunel, E.; Allgeier, A.; Tedrow, J.; Storz, T.; Preston, Correll,
J.; Manley, T.; Soukup, D. T.; Jensen, R.; Syed, R.; Moniz, G.; Larsen, R.;
Martinelli, Reider, M., P. Tetrahedron Lett. 2005, 46, 7831–7834. (f) Yan,
Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198–7202. (g) Axtell, A. T.;
Klosin, J.; Abboud, K. A. Organometallics 2006, 25, 5003–5009. (h) Cobley,
C. J.; Froese, R. D. J.; Klosin, J.; Qin, C.; Whiteker, G. T.; Abboud, K. A.
Organometallics 2007, 26, 2986–2999. (i) Rubio, M.; Suarez, A.; Alvarez,
E.; Bianchini, C.; Oberhauser, W.; Peruzzini, M.; Pizzano, A. Organome-
tallics 2007, 26, 6428–6436. (j) Leclercq, L.; Suisse, I.; Agbossou-
Niedercorn, F. Chem. Commun. 2008, 311–313. (h) Watkins, A. L.;
Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553–4556.
1
, 2, and 7). Further increase in the temperature from 80 to
100 °C gave lower regioselectivity, albeit the conversion
increased somewhat (Table 1, entry 8). The pressure
dependency of the catalytic system is also pronounced, as
the activity and selectivity decreased sharply with the
increased pressure (Table 1, entries 2-4). A lower ligand
(
4) Tissot, O.; Gouygou, M.; Dallemer, F.; Daran, J.-C.; Balavoine,
G. G. A. Eur. J. Inorg. Chem. 2001, 238, 5–2389.
(
5) Klein, H.; Jackstell, R.; Beller, M. Chem. Commun. 2005, 2283–
2
285.
(
6) (a) Casey, C. P.; Martins, S. C.; Fagan, M. A. J. Am. Chem. Soc.
2
004, 126, 5585–5592. (b) Parrinello, G.; Stille, J. K. J. Am. Chem. Soc.
987, 109, 7122–7127.
(13) (a) Terstiege, I.; Maleczka, R. E. J. Org. Chem. 1999, 64, 342–
343. (b) Guin, D.; Baruwati, B.; Manorama, S. V. Org. Lett. 2007, 9, 1419–
1421.
1
(
7) Yamane, M.; Yukimura, N.; Ishiai, H.; Narasaka, K. Chem. Lett.
2
006, 35, 540–541.
(14) For 3-phenylpropionyl chloride: (a) Jia, X.; Liu, X.; Li, J.; Zhao,
P.; Zhang, Y. Tetrahedron Lett. 2007, 48, 971–974. (b) Maeda, H.; Maki,
T.; Ohmori, H. Tetrahedron Lett. 1995, 36, 2247–2250. For 3-phenylpro-
pionyl acid: (c) Goossen, L. J.; Ghosh, K. Chem. Commun. 2002, 836–
837. (d) Uchiyama, M.; Furumoto, S.; Saito, M.; Kondo, Y.; Sakamoto, T.
J. Am. Chem. Soc. 1997, 119, 11425–11433. For 3-phenylpropionyl amide:
(e) Shono, T.; Masuda, H.; Murase, H.; Shimomura, M.; Kashimura, S. J.
Org. Chem. 1992, 57, 1061–1063. (f) Spletstoser, J. T.; White, J. M.;
Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2007, 129, 3408–3419.
(15) (a) Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V. Angew. Chem.
2006, 118, 4894–4897. Angew. Chem., Int. Ed. 2006, 45, 4776-4779. (b)
Crich, D.; Neelamkavil, S. J. Am. Chem. Soc. 2001, 123, 7449–7450. (c)
Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc.
2006, 128, 8412–8413.
(
8) Dieleman, C. B.; Kamer, P. C. J.; Reek, J. N. H.; Van Leeuwen,
P. W. N. M. HelV. Chim. Acta 2001, 84, 3269–3280.
(
9) Semeril, D.; Jeunesse, C.; Matt, D.; Toupet, L. Angew. Chem. 2006,
18, 5942–5946; Angew. Chem., Int. Ed. 2006, 45, 5810-5814.
10) Peng, W.-J.; Bryant, D. R. (UCC) PCT Int. Patent WO 03/78444,
003.
11) (a) Carroll, F. I.; Melvin, M. S.; Nuckols, M. C.; Mascarella, S. W.;
1
(
2
(
Navarro, H. A.; Thomas, J. B. J. Med. Chem. 2006, 49, 1781–1791. (b)
Garner, P.; Kaniskan, H. U.; Hu, J.; Youngs, W. J.; Panzner, M. Org. Lett.
2
006, 8, 3647–3650. (c) Jones, M. C.; Marsden, S. P.; Subtil, D. M. M.
Org. Lett. 2006, 8, 5509–5512. (d) Biddle, M. M.; Lin, M.; Scheidt, K. A.
J. Am. Chem. Soc. 2007, 129, 3830–3831. (e) Tennakoon, M. A.; Henninger,
T. C.; Abbanat, D.; Foleno, B. D.; Hilliard, J. J.; Bush, K.; Macielag, M. J.
Bioorg. Med. Chem. Lett. 2006, 16, 6231–6235.
(16) Alper found that the palladium-catalyzed hydroesterification of
styrene afforded 3-arylpropionic ester with 90% linear regioselectivity.
Vieira, T. O.; Green, M. J.; Alper, H. Org. Lett. 2006, 8, 6143–6145.
(17) (a) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128,
16058–16061. (b) Yu, S.; Chie, Y.; Guan, Z.; Zhang, X. Org. Lett. 2008,
10, 3469–3472.
(
12) (a) Lacklock, T. J.; Shuman, R. F.; Butcher, J. W., Jr.; Shearin,
W. E.; Budavari, J.; Grenda, V. J. J. Org. Chem. 1988, 53, 836–844. (b)
Chang, H. S.; Woo, J. C.; Lee, K. M.; Ko, Y. K.; Moon, S.-S.; Kim, D.-W.
Synth. Commun. 2002, 32, 31–35. (c) Fukuda, Y.; Maeda, Y.; Ishii, S.;
Kondo, K.; Aoyama, T. Synthesis 2006, 589–590.
242
Org. Lett., Vol. 11, No. 1, 2009