D. Saha et al. / Polyhedron 35 (2012) 55–61
61
acetone, but for
2
the order was: acetonitrile > acetone >
[5] J.T. Lutz Jr., in: Kirk-Othmer, M. Grayson, D. Eckroth, G.J. Bushey, C.I. Eastman,
A. Klingsberg, L. Spiro (Eds.), Encyclopedia of Chemical Technology, third ed.,
vol. 9, Wiley, New York, 1980, pp. 251–266.
ethanol > methanol. The catalytic reaction was also performed at
different temperatures to study the effect on the catalytic efficacy
of 1 and 2. While the best performance was observed for 1 in the
temperature range 40–45 °C, for 2 it was 60–65 °C (see Supple-
mentary Material, Table S3).
[
6] L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1999) 85.
[7] P. Karandikar, M. Agashe, K. Vijayamohanan, A.J. Chandwadkar, Appl. Catal. A
57 (2004) 133.
2
[
[
8] S. Koner, Chem. Commun. (1998) 593.
9] S. Jana, B. Dutta, R. Bera, S. Koner, Langmuir 23 (2007) 2492.
[
[
10] S. Rayati, S. Zakavi, M. Koliaei, A. Wojtczak, A. Kozakiewicz, Inorg. Chem.
Commun. 13 (2010) 203.
11] C. Adhikary, R. Bera, B. Dutta, S. Jana, G. Bocelli, A. Cantoni, S. Chaudhuri, S.
Koner, Polyhedron 27 (2008) 1556.
4
. Conclusion
To summarize, we have demonstrated the catalytic efficiency of
[12] R. Bera, C. Adhikary, S. Ianelli, S. Chaudhuri, S. Koner, Polyhedron 29 (2010)
166.
2
two newly synthesized and structurally characterized copper
complexes in the olefin epoxidation reaction under homogeneous
conditions. The catalysts showed good efficiency towards the
epoxidation reactions, as reflected by the high turnover frequency
of the reactions. The copper Schiff-base compound 1 demonstrates
better selectivity towards epoxides than the copper carboxylate
compound 2. This is probably due to the presence of a Lewis acid
Mg(II) site in complex 2-epoxides undergoing an in-situ ring open-
ing reaction to afford side products.
[
13] M.K. Tse, S. Bhor, M. Klawonn, G. Anilkumar, H. Jiao, A. Spannenberg, C. Döbler,
W. Mägerlein, H. Hugl, M. Beller, Chem. Eur. J. 16 (2006) 1875. and references
therein..
[
[
14] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem., Int. Ed. 45
(
2006) 6962.
15] B.M. Trost, Angew. Chem., Int. Ed. 34 (1995) 259.
[16] G. Strukul (Ed.), Catalytic Oxidations with Hydrogen Peroxide as Oxidant,
Kluwer Academic, Dordrecht, The Netherlands, 1992.
[
[
17] G. Grigoropoulou, J.H. Clark, J.A. Elings, Green Chem. 5 (2003) 1.
18] M. Biswas, G. Pilet, J. Tercers, M.S. El Fallah, S. Mitra, Inorg. Chim. Acta 362
(2009) 2915.
[19] Bruker, APEX 2, SAINT, XPREP, Bruker AXS Inc., Madison, Wisconsin, USA, 2007.
[20] Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.
[21] G.M. Sheldrick, SHELXS97 and SHELXL97: Programs for Crystal Structure Solution
and Refinement, University of Göttingen, Germany, 1997.
Acknowledgements
[
22] Z. Vargova, V. Zeleoak, I. Cisaoova, K. Gyoryova, Thermochim. Acta 423 (2004)
We acknowledge the Department of Science and Technology
DST), Government of India for funding a project (to S.K.) (SR/S1/
IC-01/2009). We also acknowledge DST for funding the Depart-
ment of Chemistry, Jadavpur University to procure a single crystal
XRD machine under the DST-FIST program.
149.
(
[
23] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., Wiley Interscience, New York, 1997.
[24] S. Koner, A. Ghosh, N. Ray Chaudhuri, A.K. Mukherjee, M. Mukherjee, R. Ikeda,
Polyhedron 12 (1993) 1311.
[
25] D.-D. Qin, Z.-Y. Yang, F.-H. Zhang, B. Du, P. Wang, T.-R. Li, Inorg. Chem.
Commun. 13 (2010) 727.
[
[
[
26] C. Adhikary, S. Koner, Coord. Chem. Rev. 254 (2010) 2933.
27] H. Kumagai, H. Sobukawa, M. Kurmoo, J. Mater. Sci. 4 (2008) 2123.
28] C.L. Perrin, J.S. Lau, Y.-J. Kim, P. Karri, C. Moore, A.L. Rheingold, J. Am. Chem.
Soc. 131 (2009) 13548.
Appendix A. Supplementary data
CCDC 817491 and 817490 contain the supplementary crystallo-
ing.html, or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033;
[
[
[
[
29] F.E.G. Guner, M. Lutz, T. Sakurai, A.L. Spek, T. Hondon, Cryst. Growth. Des. 10
(
2010) 4327.
30] I.R. Fernando, N. Daskalakis, K.D. Demando, G. Mezei, New J. Chem. 34 (2010)
221.
31] J.S. Costa, C.M. Markus, I. Mutikainen, P. Gamez, J. Reedijk, Inorg. Chim. Acta
363 (2010) 2046.
32] S. Seelan, A.K. Sinha, D. Srinivas, S. Sivasanker, J. Mol. Catal. A 157 (2000) 163.
[33] P. Karandikar, M. Agashe, K. Vijayamohanan, A. Chandwadkar, J. Appl. Catal. A
257 (2004) 133.
[
[
34] D.E. De Vos, M. Dams, B.F. Sels, P.A. Jacobs, Chem. Rev. 102 (2002) 3615.
35] T. Osako, S. Nagatomo, Y. Tachi, T. Kitagawa, S. Itoh, Angew. Chem., Int. Ed.
Engl. 41 (2002) 4325.
References
[
36] S.T. Prigge, B.A. Eipper, R.E. Mains, L.M. Amzel, Science 304 (2004) 864.
[
[
[
[
1] B.S. Lane, K. Burgess, Chem. Rev. 103 (2003) 2457.
[37] R.A. Ghiladi, K.R. Hatwell, K.D. Karlin, H.-W. Huang, P. Moënne-Loccoz, C.
Krebs, B.H. Huynh, L.A. Marzilli, R.J. Cotter, S. Kaderli, A.D. Zuberbühler, J. Am.
Chem. Soc. 123 (2001) 6183.
2] H.C. Kolb, M.S. VanNieuwenhze, K.B. Sharpless, Chem. Rev. 94 (1994) 2483.
3] R. Noyori, M. Aoki, K. Sato, Chem. Commun. (2003) 1977.
4] T. Katsuki, Chem. Soc. Rev. 33 (2004) 437.