CP al et aa lsy es i ds oS c ni eo nt c ae d &j uTs et c mh na or lgo i ng ys
Page 8 of 10
ARTICLE
Journal Name
In summary, we have demonstrated that the tantalum-based
92, 5873. (g) R. E. Dinnebier, S. Vensky and M. Jansen, Chem. Eur.
J., 2003, 9, 4391. (h) G. Meier and T. Braun, Angew. Chem. Int. Ed.,
2012, 51, 12564. (i) M. Aresta, I. Tommasi, A. Dibenedetto, M.
2
DOI: 10.1039/C9CY00056A
peroxocarbonate species [P4,4,4,4
]
3
[Ta( -O
2
)
3
(CO
[Ta(O)
in the presence of H
peroxocarbonate species have been verified experimentally by NMR,
4
)] can be in-situ
2
generated from the reaction of [P4,4,4,4
]
3
3
( -O
2
)] with the
compressed CO
2
2 2
O . The structure of
FT-IR, HRMS and DFT calculations. The newly formed tantalum- 2 (a) M. Aresta, E. Quaranta and A. Ciccarese, J. Mol. Catal., 1987,
based peroxocarbonate ILs displayed a high reactivity and selectivity
toward the epoxidation of olefins and allylic alcohols under mild
condition. Especially, the conversion between peroxotantalate and
41, 355. (b) M. Aresta, C. Fragale, E. Quaranta and L. Tommas, J.
Chem. Soc., Chem. Commun., 1992, 4, 315. (c) S. Sase, M.
Hashimoto and K. Goto, Chem. Lett., 2015, 44, 157.
Ta-peroxocarbonate species is completely reversible, and CO
actually as a trigger agent for epoxidation reaction. This unique 4 (a) R. L. Brutchey, C. G. Lugmair, L. O. Schebaum and T. D. Tilley, J.
2
acts 3 D. Bayot and M. Devillers, Coordin. Chem. Rev., 2006, 250, 2610.
feature allows this IL catalyst to be recyclable facilely. The DFT
calculation indicated further that due to the insertion of CO into the
Ta-O bond, the atomic charge of Operoxo becomes more positive, and
the covalency of Ta-Operoxo bond is enhanced. These features leads to
a higher reactivity of Ta-Operoxo
Catal., 2005, 229, 72. (b) Q. S. Gao, S. N. Wang, Y. C. Ma, Y. Tang,
C. Giordano and M. Antonietti, Angew. Chem. Int. Ed., 2012, 51,
961. (c) D. T. Bregante, N. E. Thornburg, J. M. Notestein and D. W.
Flaherty, ACS Catal., 2018, 8, 2995. (d) S. S. K. Ma, T. Hisatomi, K.
Maeda, Y. Moriya and K. Domen, J. Am. Chem. Soc., 2012, 134,
19993. (e) D. A. Ruddy and T. D Tilley, J. Am. Chem. Soc., 2008, 130,
11088. (f) N. Morlanés and J. M. Notestein, J. Catal., 2010, 275,
191. (g) P. Guillo, M. I. Lipschutz, M. E. Fasulo and T. D. Tilley, ACS
Catal., 2017, 7, 2303. (h) J. C. Mohandas, E. A. Hamad, E. Callens,
M. K. Samantaray, D. Gajan, A. Gurinov, T. Ma, S. O. Chikh, A. S.
Hoffman, B. C. Gates and J. M. Basset, Chem. Sci., 2017, 8, 5650.
(i) H. Hamed, Z. Omid, H. Thomas W, Chem. Sci., 2016, 7, 6760.
2
2
)]3- than that in [Ta( -O ]3- anions. Two
2
bond in [Ta( -O ) (CO )
2 3 4 2 4
possible reaction pathways were investigated and the results
2
indicated that the epoxidation at the η -peroxo site was observed to
be more competitive than at the peroxocarbonate site. Mononuclear
tantalum complexes have received significantly much less attention
in the literature as epoxidation catalysts, especially than that of these
reported tungsten peroxo complex catalysts.30 This work is the first
example of CO
2
-induced metal-based peroxocarbonate ILs. We 5 D. R. Mulford, J. R. Clark, S. W. Schweiger, P. E. Fanwick and I. P.
consider that this catalytically active metal peroxocarbonate ILs
remained a huge challenge for mechanic studies and the
investigation will inspire the rational design of new ILs for more
efficient catalysis from the viewpoint of fundamental science and
practical application.
Rothwell, Organometallics, 1999, 18, 4448.
6
7 (a) E. L. Roux, M. Chabanas, A. Baudouin, A. Mallmann, C. Copéret,
E. A. Quadrelli, J. T. Cazat, J. M. Basset, W. Lukens, A. Lesage, L.
Emsley and G. J. Sunley, J. Am. Chem. Soc., 2004, 126, 13391. (b)
Y. Chen, E. Abou-hamad, A. Hamieh, B. Hamzaoui, L. Emsley and J.
M. Basset, J. Am. Chem. Soc., 2015, 137, 588.
Conflicts of interest
There are no conflicts to declare.
8
9
1
1
(a) H. Egami and T. Katsuki, Angew. Chem. Int. Ed., 2008, 47, 5171.
b) H. Egami, T. Oguma and T. Katsuki, J. Am. Chem. Soc., 2010,
32, 5886. (c) S. Q. Shi, Y. G. Chen, J. Gong, Z. M. Dai and L. Y. Qu,
(
1
Acknowledgements
Transit. Metal Chem., 2005, 30, 136.
(a) Y. Zhu, Q. Wang, R. G. Cornwall and Y. Shi, Chem. Rev., 2014,
The authors are grateful for financial support from the National
Natural Science Foundation of China (21373082, 21773061), the
Innovation Program of the Shanghai Municipal Education
Commission (15ZZ031).
1
14, 8199. (b) L. Graser, R. M. Reich, M. Cokoja, A. Pöthig and F. E.
Kühn, Catal. Sci. Technol., 2015, 5, 4772. (c) C. Dai, J. Zhang, C.
Huang and Z. Lei, Chem. Rev., 2017, 117, 6929.
0 (a) C. X. Miao, B. Wang, Y. Wang, C. G. Xia, Y. M. Lee, W. Nam and
W. Sun, J. Am. Chem. Soc., 2016, 138, 936. (b) M. L. Kuznetsov, B.
G. M. Rocha, A. J. L. Pombeiro and G. B. Shul’pin, ACS Catal., 2015,
Notes and References
5
, 3823.
1 (a) J. Kim, J. Chun and R. Ryoo, Chem. Commun., 2015, 51, 13102.
b) L. J. Davies, P. McMorn, D. Bethell, P. C. B. Page, F. King, F. E.
1
(a) H. Furutachi, K. Hashimoto, S. Nagatomo, T. Endo, S. Fujinami,
Y. Watanabe, T. Kitagawa and M. Suzuki, J. Am. Chem. Soc., 2005,
(
1
27, 4550. (b) K. Hashimoto, S. Nagatomo, S. Fujinami, H.
Hancock and G. J. Hutchings, J. Catal., 2001, 198, 319. (c) M. G.
Clerici and M. E. Domine In Liquid Phase Oxidation via
Heterogeneous Catalysis: Organic Synthesis and Industrial
Applications, M. G. Clerici and O. A. Kholdeeva, Eds.; Wiley:
Hoboken, New Jersey, 2013, p. 21.
Furutachi, S. Ogo, M. Suzuki, A. Uehara, Y. Maeda, Y. Watanabe
and T Kitagawa, Angew. Chem. Int. Ed., 2002, 41, 1202. (c) M.
Aresta, I. Tommasi, E. Quaranta, C. Fragale, J. Mascetti, M.
Tranquille, F. Galan and M. Fouassier, Inorg. Chem., 1996, 35,
4
254. (d) M. Aresta, A. Dibenedetto and I. Tommasi, Eur. J. Inorg.
1
2 (a) N. E. Thornburg, A. B. Thompson and J. M. Notestein, ACS
Catal., 2015, 5, 5077. (b) W. J. Yan, A. Ramanathan, P. D. Patel, S.
Chem., 2001, 1801. (e) B. S. Lane, M. Vogt, V. J. DeRose and K.
Burgess, J. Am. Chem. Soc., 2002, 124, 11946. (f) P. J. Hayward, D.
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins