J . Org. Chem. 1999, 64, 2433-2439
2433
Efficien t, Ecologica lly Ben ign , Aer obic Oxid a tion of Alcoh ols†
Istva´n. E. Marko´,*,‡ Paul R. Giles,‡ Masao Tsukazaki,‡ Isabelle Chelle´-Regnaut,‡
Arnaud Gautier,‡ Stephen M. Brown,§ and Christopher J . Urch
Universite´ Catholique de Louvain, De´partement de Chimie, Laboratoire de Chimie Organique,
Baˆtiment Lavoisier, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
Received November 10, 1998
The oxidation of alcohols into aldehydes and ketones can be efficiently performed using catalytic
amounts of CuCl‚Phen and molecular oxygen or air. This novel, ecologically friendly procedure
releases water as the only byproduct.
The transformation of alcohols into aldehydes and
ketones is of paramount importance in organic chemistry,
both for laboratory-scale experiments and in the manu-
facturing processes.1 Unfortunately, the vast majority of
the common oxidants have to be used at least in stoichio-
metric amount. Moreover, they are usually hazardous or
toxic and generate large quantities of noxious byprod-
ucts.2 While many ecologically benign processes have
F igu r e 1.
been developed for the reduction of carbonyl derivatives,3
discovery of a novel and ecologically friendly, catalytic
aerobic protocol for the efficient oxidation of alcohols 1
into carbonyl derivatives 2 (Figure 1).6
In this paper, we wish to report full details on the
establishment of this useful catalytic process and develop
further its synthetic utility. In light of some of our
preliminary mechanistic studies, a plausible catalytic
cycle will also be discussed.
Our own work in the area of aerobic oxidations was
inspired by the exquisite research performed on the
structure and reactivity of the binuclear copper proteins,7
hemocyanin and tyrosinase, and by the seminal contribu-
tion of Rivie`re and J allabert.8
similar procedures have been far less investigated for the
oxidation of alcohols.4
Despite their obvious economical and ecological im-
portance, few catalytic systems are available for the
transformation of alcohols into aldehydes and ketones,
using molecular oxygen or air as the ultimate, stoichio-
metric oxidant.5 Moreover, most of the currently available
catalytic oxidation processes suffer from severe limita-
tions, being usually only effective with reactive alcohols,
such as benzylic and allylic ones, or requiring high
pressures, temperatures, and catalyst loading.
We have already described in preliminary form the
These two authors have shown that the simple copper
complex CuCl‚Phen (Phen ) 1,10-phenanthroline) pro-
* To whom correspondence should be addressed. Fax: 32-10-47 27
88. E-mail: marko@chor.ucl.ac.be.
† Dedicated with deep respect to Professor Theodore Cohen.
‡ Universite´ Catholique de Louvain.
(6) (a) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch
C. J . Science 1996, 274, 2044. (b) Marko´, I. E.; Giles, P. R.; Tsukazaki,
M.; Chelle´-Regnaut, I.; Urch C. J .; Brown, S. M. J . Am. Chem. Soc.
1997, 119, 12661. (c) Marko´, I. E.; Tsukazaki, M.; Giles, P. R.; Brown,
S. M.; Urch C. J . Angew. Chem., Int. Ed., Engl. 1997, 36, 2208. For an
independent report of the aerobic TPAP-catalyzed oxidation of alcohols,
see: Lenz, R.; Ley, S. V. J . Chem. Soc., Perkin Trans. 1 1997, 3291.
(7) For excellent reviews on the formation, isolation, and reactions
of dinuclear copper(II) peroxides, see: (a) Karlin, K. D.; Gultneh, Y.
Progr. Inorg. Chem. 1987, 35, 219-327. (b) Zuberbu¨hler, A. D. In
Copper Coordination Chemistry: Biochemical and Inorganic Perspec-
tives; Karlin, K. D., Zubieta, J ., Ed.; Adenine: Guilderland, New York,
1983. (c) Sakharov, A. M.; Skibida, I. P. Kinet. Catal. 1988, 29, 96-
102. (d) Tyleklar, Z.; J acobson, R. R.; Wei, N.; Murthy, N. N.; Zubieta,
J .; Karlin, K. D. J . Am. Chem. Soc. 1993, 115, 2677-2689. (e) Kitajima,
N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa,
T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. Ibid. 1992, 114, 1277-
1291. (f) Fox, S.; Nanthakumar, A.; Wikstrom, M.; Karlin, K. D.;
Blackburn, N. J . Ibid. 1996, 118, 24-34. (g) Solomon, E. I.; Sundaram,
U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563-2605.
(8) (a) J allabert, C.; Rivie`re, H. Tetrahedron Lett. 1977, 1215. (b)
J allabert, C.; Lapinte, C.; Rivie`re, H. J . Mol. Catal. 1980, 7, 127. (c)
J allabert, C.; Rivie`re, H. Tetrahedron 1980, 36, 1191. (d) J allabert,
C.; Lapinte, C.; Rivie`re, H. J . Mol. Catal. 1982, 14, 75. For other
pertinent studies on aerobic oxidation of alcohols using copper com-
plexes, see, for example: (a) Capdevielle, P.; Sparfel, D.; Baranne-
Lafont, J .; Cuong, N. K.; Maumy, M. J . Chem. Res., Synop. 1993, 10
and references therein. (b) Munakata, M.; Nishibayashi, S.; Sakamoto,
H. J . Chem. Soc., Chem. Commun. 1980, 219. (c) Bhaduri, S.; Sapre,
N. Y. J . Chem. Soc., Dalton Trans. 1981, 2585. (d) Semmelhack, M.
F.; Schmid, C. R.; Cortes, D. A.; Chon, C. S. J . Am. Chem. Soc. 1984,
106, 3374.
§ Zeneca Process Technology Department, Huddersfield Works, P.O.
Box A38, Leeds Road, Huddersfield HD2 1FF, U.K.
Zeneca Agrochemicals, J ealott’s Hill Research Station, Bracknell,
Berkshire RG42 6ET, U.K.
(1) For general reviews on oxidation reactions, see: (a) Larock, R.
C. In Comprehensive Organic Transformations; VCH Publishers Inc.:
New York, 1989; p 604. (b) Procter, G. In Comprehensive Organic
Synthesis; Ley, S. V., Ed.; Pergamon: Oxford, 1991; Vol. 7, p 305. (c)
Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, p 251. (d) Lee,
T. V. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: Oxford, 1991; Vol. 7, p 291.
(2) Trahanovsky, W. S. In Oxidation in Organic Chemistry; Blom-
quist, A. T., Wasserman, H., Eds.; Academic Press: New York, 1978;
Part A-D.
(3) Noyori, R.; Hashigushi, S. Acc. Chem. Res. 1997, 30, 97 and
references therein.
(4) (a) Sheldon, R. A.; Kochi, J . K. In Metal-Catalyzed Oxidations
of Organic Compounds; Academic Press: New York, 1981. (b) Ley, S.
V.; Norman, J .; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.
(c) Murahashi, S.-I.; Naota, T.; Oda, Y.; Hirai, N. Synlett 1995, 733.
(d) Krohn, K.; Vinke, I.; Adam, H. J . Org. Chem. 1996, 61, 1467 and
references therein.
(5) (a) Sheldon, R. A. In Dioxygen Activation and Homogeneous
Catalytic Oxidation; Simandi, L. L., Ed.; Elsevier: Amsterdam, 1991;
p 573. (b) J ames, B. R. In Dioxygen Activation and Homogeneous
Catalytic Oxidation; Simandi, L. L., Ed.; Elsevier: Amsterdam, 1991;
p 195. (c) Ba¨ckvall, J .-E.; Chowdhury, R. L.; Karlsson, U. J . Chem.
Soc., Chem. Commun. 1991, 473. (d) Iwahama, T.; Sakaguchi, S.;
Nishiyama, Y.; Ishii, Y. Tetrahedron Lett. 1995, 36, 6923. (e) Mandal,
A. K.; Iqbal, J . Tetrahedron 1997, 53, 7641 and references therein.
10.1021/jo982239s CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/18/1999