RSC Advances
Table The recycling of M–Z (48) in the oxidation of p-
Paper
4
5 N. N. Tu ˇs ar, S. Jank and R. Gl ¨a ser, ChemCatChem, 2011, 3,
a
chlorotoluene
254–269.
6
7
J. S. Yoo, Appl. Catal., A, 1996, 135, 261–271.
C. Sprung and B. M. Weckhuysen, Chem.–Eur. J., 2014, 20,
3667–3677.
Recycle number
1 (fresh)
2
3
4
Conv. (%)
Sel. (%)
93.8
90.5
82.1
96.4
79.5
95.8
80.2
95.1
8 H. X. Tao, H. Yang, X. H. Liu, J. W. Ren, Y. Q. Wang and
G. Z. Lu, Chem. Eng. J., 2013, 225, 686–694.
9 H. L. Janardhan, G. V. Shanbhag and A. B. Halgeri, Appl.
Catal., A, 2014, 471, 12–18.
a
Reaction conditions: catalyst 20 mg, p-chlorotoluene 1 mL, solvent
O 3 g, oxygen ow rate
0 mL min , time 8 h, temperature 110 C.
(acetic acid) 10 mL, HBr (40 wt%) 30 mg, H
2
ꢀ
1
ꢁ
5
10 D. B. Shah, D. T. Hayhurst, G. Evanina and C. J. Guo, AIChE
J., 1988, 34, 1713–1717.
fresh one, indicating that there is no change in catalyst struc- 11 W. Tan, M. Liu, Y. Zhao, K. K. Hou, H. Y. Wu, A. F. Zhang,
ture. In other words, the deactivation of catalyst is likely to be
due to the leaching of a small amount of manganese from the
H. O. Liu, Y. R. Wang, C. S. Song and X. W. Guo,
Microporous Mesoporous Mater., 2014, 196, 18–30.
catalyst during reaction. It is observed that the leaching of 12 Y. T. Cheng, Z. Wang, C. J. Gilbert, W. Fan and G. W. Huber,
manganese decreases in further cycles. Therefore, catalytic
Angew. Chem., Int. Ed., 2012, 51, 11097–11100.
activity probably originates from the manganese ions in the 13 Q. Ouyang, S. F. Yin, L. Chen, X. P. Zhou and C. T. Au, AIChE
framework of M–Z (x). The results indicate that the catalyst can
J., 2013, 59, 532–540.
be recycled a number of times without showing signicant loss 14 D. Radu, P. Glatzel, A. Gloter, O. Stephan, B. M. Weckhuysen
of catalytic activity.
and F. M. F. de Groot, J. Phys. Chem. C, 2008, 112, 12409–
2416.
5 Y. Chen, G. Li, F. Yang and S. M. Zhang, Polym. Degrad. Stab.,
011, 96, 863–869.
Efficient synthesis of p-chlorobenzaldehyde by liquid-phase 16 G. Lv, F. Bin, C. L. Song, K. P. Wang and J. O. Song, Fuel,
oxidation of p-chlorotoluene with molecular oxygen was ach-
2013, 107, 217–224.
ieved over Mn–ZSM-5 (Si/Mn ¼ 48, Mn 1.7 wt%) under opti- 17 X. R. Lou, P. F. Liu, J. Li, Z. Li and K. He, Appl. Surf. Sci., 2014,
mized conditions (catalyst 20 mg, p-chlorotoluene 1 mL, solvent
307, 382–387.
1
1
4
. Conclusions
2
(
acetic acid) 10 mL, HBr (40 wt%) 30 mg, H
2
O 3 g, oxygen ow 18 Y. T. Meng, H. C. Genuino, C. H. Kuo, H. Huang, S. Y. Chen,
ꢀ
1
ꢁ
rate 50 mL min , time 8 h, temperature 100 C). With 93.8%
p-chlorotoluene conversion and 90.5% p-chlorobenzaldehyde
L. C. Zhang, A. Rossi and S. L. Suib, J. Am. Chem. Soc., 2013,
135, 8594–8605.
selectivity, the highest product yield is 85.4%. It is shown that 19 Y. Q. Deng, T. Zhang, C. T. Au and S. F. Yin, Appl. Catal., A,
the Mn active sites resulted from manganese incorporation into
2013, 467, 117–123.
the ZSM-5 framework play an effective role in p-chlorotoluene 20 Y. Q. Deng, T. Zhang, C. T. Au and S. F. Yin, Catal. Commun.,
oxidation. The superior performance of the Mn–ZSM-5 catalyst
2014, 43, 126–130.
is attributed to its mild acidity and good distribution of 21 T. Zhang, Y. Q. Deng, W. F. Zhou, C. T. Au and S. F. Yin,
manganese species.
Chem. Eng. J., 2014, 240, 509–515.
2
2
2 W. Partenheimer, Adv. Synth. Catal., 2004, 346, 297–306.
3 E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen,
R. L. Patton and R. M. Kirchner, Nature, 1978, 271, 512–516.
Acknowledgements
The project was nancially supported by the National Natural 24 H. X. Yuan, Q. H. Xia, H. J. Zhan, X. H. Lu and K. X. Su, Appl.
Science Foundation of China (Grant No. 21476065, 21273067),
Catal., A, 2006, 304, 178–184.
the program for New Century Excellent Talents in Universities 25 H. H. Chen, H. P. Zhang and Y. Yan, Chem. Eng. J., 2014, 254,
NCET-10-0371), Program for Changjiang Scholars and Innova-
133–142.
tive Research Team in University (IRT1238), and the Funda- 26 L. Wang, H. P. Zhang, Y. Yan and X. Y. Zhang, RSC Adv.,
(
mental Research Funds for the Central Universities. C. T. Au
thanks the Hunan University for an adjunct professorship.
2015, 5, 29482–29490.
27 F. Milella, J. M. Gallardo-Amores, M. Baldic and G. Busca,
J. Mater. Chem., 1998, 8, 2525–2531.
2
8 S. Velu, N. Shah, T. M. Jyothi and S. Sivasanker, Microporous
Mesoporous Mater., 1999, 33, 61–75.
References
1
2
3
4
R. A. Sheldon and H. V. Bekkum, Fine Chemicals through 29 B. Qi, X. H. Lu, D. Zhou, Q. H. Xia, Z. R. Tang, S. Y. Fang,
Heterogeneous Catalysis, Wiley-VCH, Weinheim, 2001.
A. J. Hu, C. X. L u¨ , H. Y. Wang and B. D. Li, Catal. Commun.,
T. Pang and Y. L. Dong, J. Mol. Catal. A: Chem., 2010, 322,
73–79.
2
007, 8, 1279–1283.
30 B. J. Dou, G. Lv, C. Wang, Q. L. Hao and K. S. Hui, Chem. Eng.
J., 2015, 270, 549–556.
31 G. Q. Zhou, J. Li, Y. Q. Yu, X. G. Li, Y. J. Wang, W. Wang and
S. Komarneni, Appl. Catal., A, 2014, 487, 45–53.
J. Q. Wang, H. Fang, Y. Li, J. J. Li and Z. Y. Yan, J. Mol. Catal.
A: Chem., 2006, 250, 75–79.
F. M. Bautista, D. Luna, J. Luque, J. M. Marinas and
J. F. S ´a nchez-Royo, Appl. Catal., A, 2009, 352, 251–258.
74168 | RSC Adv., 2015, 5, 74162–74169
This journal is © The Royal Society of Chemistry 2015