Page 7 of 9
Journal of the American Chemical Society
Complex. Angew. Chem., Int. Ed. 2016, 55, 15319–15322. (b)
Enabling Decarboxylative Alkylation of Heteroarenes. Org.
Lett. 2019, 21, 4259–4265. (d) Feng, G.; Wang, X.; Jin, J.
Decarboxylative C–C and C–N Bond Formation by Ligand-
Accelerated Iron Photocatalysis. Eur. J. Org. Chem. 2019,
6728–6732.
(11) Due to disorder of the core, structural determination of
four oxo and four hydroxo bridging ligands at the specific
position was unsuccessful, and we assigned the overall struc-
ture by taking into account for related clusters and MOFs con-
1
2
3
4
5
6
7
8
9
Hu, A.; Guo, J.-J.; Pan, H.; Zuo, Z. Selective Functionalization
of Methane, Ethane, and Higher Alkanes by Cerium Photoca-
talysis. Science 2018, 361, 668–672. (c) Hu, A.; Guo, J.-J.;
Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. δ‑Selective Functionaliza-
tion of Alkanols Enabled by Visible-Light-Induced Ligand-to-
Metal Charge Transfer. J. Am. Chem. Soc. 2018, 140, 1612–
1
616. (d) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z.
Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols
with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc.
nected by cerium clusters with a Ce
(12) related cerium clusters with Ce
6
O
4
(OH)
4
core (see ref 12).
(OH) core: (a)
2
018, 140, 13580–13585. (e) Zhang, K.; Chang, L.; An, Q.;
6
O
4
4
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Wang, X.; Zuo, Z. Dehydroxymethylation of Alcohols Ena-
bled by Cerium Photocatalysis. J. Am. Chem. Soc. 2019, 141,
10556-10564. (f) Schwarz, J.; König, B. Visible-light Mediat-
ed C–C Bond Cleavage of 1,2-Diols to Carbonyls by Cerium-
photocatalysis. Chem. Commun. 2019, 55, 486-488.
Mereacre, V.; Ako, A. M.; Akhtar, M. N.; Lindemann, A.;
Anson, C. E.; Powell, A. K. Homo- and Heterovalent Polynu-
clear Cerium and Cerium/Manganese Aggregates Helv. Chim.
Acta 2009, 92, 2507–2524. (b) Das, R.; Sarma, R.; Baruah, J.
B. A hexanuclear cerium(IV) cluster with mixed coordination
environment. Inorg. Chem. Commun. 2010, 13, 793–795. (c)
Hennig, C.; Ikeda-Ohno, A.; Kraus, W.; Weiss, S.; Pattison,
P.; Emerich, H.; Abdala, P. M.; Scheinost, A. C. Crystal Struc-
ture and Solution Species of Ce(III) and Ce(IV) Formates:
From Mononuclear to Hexanuclear Complexes. Inorg. Chem.
2013, 52, 11734–11743. (d) Mathey, L.; Paul, M.; Copéret, C.;
Tsurugi, H.; Mashima, K. Cerium(IV) Hexanuclear Clusters
from Cerium(III) Precursors: Molecular Models for Oxidative
Growth of Ceria Nanoparticles. Chem. Eur. J. 2015, 21,
13454–13461. (e) Lammert, M.; Wharmby, M. T.; Smolders,
S.; Bueken, B.; Lieb, A.; Lomachenko, K. A.; De Vos, D.;
Stock, N. Cerium-based metal organic frameworks with UiO-
66 architecture: synthesis, properties and redox catalytic activ-
ity. Chem. Commun. 2015, 51, 12578-12581.
(13) Song, H.-T.; Ding, W.; Zhou, Q.-Q.; Liu, J.; Lu, L.-Q.;
Xiao, W.-J. Photocatalytic Decarboxylative Hydroxylation of
Carboxylic Acids Driven by Visible Light and Using Molecu-
lar Oxygen. J. Org. Chem. 2016, 81, 7250–7255.
(14) (a) Partenheimer, W. The effect of zirconium in met-
al/bromide catalysts during the autoxidation of p-xylene: Part I.
Activation and changes in benzaldehyde intermediate for-
mation. J. Mol. Catal. A: Chem. 2003, 206, 105–119. (b)
Hermans, I.; Peeters, J.; Vereecken, L.; Jacobs, P. A. Mecha-
nism of Thermal Toluene Autoxidation. ChemPhysChem 2007,
8, 2678–2688. (c) Wang, X.; Cao, X.; Hu, X.; Li, G.; Zhu, L.;
Hu, C. Effect of zirconium addition on vanadium-catalyzed
(6) Reddy Yatham, V.; Bellotti, P.; König, B. Decarboxyla-
tive hydrazination of unactivated carboxylic acids by cerium
photocatalysis. Chem. Commun. 2019, 55, 3489–3492.
(7) cerium photocatalysis: (a) Yin, H.; Carroll, P. J.; Anna, J.
M.; Schelter, E. J. Luminescent Ce(III) Complexes as Stoichi-
ometric and Catalytic Photoreductants for Halogen Atom Ab-
straction Reactions. J. Am. Chem. Soc. 2015, 137, 9234−9237.
(b) Yin, H.; Carroll, P. J.; Manor, B. C.; Anna, J. M.; Schelter,
E. J. Cerium Photosensitizers: Structure−Function Relation-
ships and Applications in Photocatalytic Aryl Coupling Reac-
tions. J. Am. Chem. Soc. 2016, 138, 5984−5993. (c) Yin, H.;
Jin, Y.; Hertzog, J. E.; Mullane, K. C.; Carroll, P. J.; Manor, B.
C.; Anna, J. M.; Schelter, E. J. The Hexachlorocerate(III) Ani-
on: A Potent, Benchtop Stable, and Readily Available Ultravi-
olet A Photosensitizer for Aryl Chlorides. J. Am. Chem. Soc.
2
016, 138, 16266−16273. (d) Qiao, Y.; Yang, Q.; Schelter, E.
J. Photoinduced Miyaura Borylation by a Rare Earth Photore-
ductant: the Hexachlorocerate(III) Anion. Angew. Chem., Int.
Ed. 2018, 57, 10999−11003. (e) Qiao, Y.; Sergentu, D.-C.;
Yin, H.; Zabula, A. V.; Cheisson, T.; McSkimming, A.; Manor,
B. C.; Carroll, P. J.; Anna, J. M.; Autschbach, J.; Schelter, E. J.
Understanding and Controlling the Emission Brightness and
Color of Molecular Cerium Luminophores. J. Am. Chem. Soc.
2
018, 140, 4588-4595. (f) Qiao, Y.; Schelter, E. J. Lanthanide
Photocatalysis. Acc. Chem. Res. 2018, 51, 2926–2936.
8) (a) Paul, M.; Shirase, S.; Morimoto, Y.; Mathey, L.;
(
Murugesapandian, B.; Tanaka, S.; Itoh, S.; Tsurugi, H.;
Mashima, K. Cerium-Complex-Catalyzed Oxidation of Aryl-
methanols under Atmospheric Pressure of Dioxygen and Its
Mechanism through a Side-On µ-Peroxo Dicerium(IV) Com-
plex. Chem. Eur. J. 2016, 22, 4008–4014. (b) Shirase, S.; Shi-
nohara, K.; Tsurugi, H.; Mashima, K. Oxidation of Alcohols
to Carbonyl Compounds Catalyzed by Oxo-Bridged Dinuclear
Cerium Complexes with Pentadentate Schiff-Base Ligands
under a Dioxygen Atmosphere. ACS Catal. 2018, 8, 6939–
2 2 3
toluene oxidation by H O in CH COOH. J. Mol. Catal. A:
Chem. 2012, 357, 1–10.
(15) Zhang, S.; Li, L.; Wang, H.; Li, Q.; Liu, W.; Xu, K.;
Zeng, C. Scalable Electrochemical Dehydrogenative Lactoni-
2
3
zation of C(sp /sp )−H Bonds. Org. lett. 2018, 20, 252–255.
(16) direct lactonization of Csp3-H bonds : (a) Sathyamoorthi,
S.; Bois, J. Du. Copper-Catalyzed Oxidative Cyclization of
Carboxylic Acids. Org. Lett. 2016, 18, 6308−6311. (b) Zhang,
N.; Cheng, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Hyperva-
lent Iodine-Mediated Oxygenation of N,N‑Diaryl Tertiary
6
947.
3
(
(
9) see supporting information
10) Decarboxylative transformations of carboxylic acids us-
Amines: Intramolecular Functionalization of sp C−H Bonds
Adjacent to Nitrogen J. Org. Chem. 2014, 79, 10581–10587.
ing photo-induced LMCT of Fe(III) complexes: (a) Sugimori,
A.; Yamada, T. Visible Light- and Gamma Ray- Induced Al-
kylation in Pyridine Ring. Effective Alkylation with Visible
Light in the Presence of Iron(III) Sulfate. Chem. Lett. 1986, 15,
409−412. (b) Sugimori, A.; Yamada, T. Visible Light- and
Radiation- Induced Alkylation in Pyridine Ring with Alkanoic
Acid. Effective Alkylation in the Presence of Iron(III) Sulfate.
Bull. Chem. Soc. Jpn. 1986, 59, 3911−3915. (c) Li, Z.; Wang,
X.; Xia, S.; Jin, J. Ligand-Accelerated Iron Photocatalysis
(c) Wang, X.; Gallardo-Donaire, J.; Martin, R. Mild ArI-
2
3
Catalyzed C(sp )-H or C(sp )-H Functionalization/C-O For-
mation: An Intriguing Catalyst-Controlled Selectivity Switch.
Angew. Chem., Int. Ed. 2014, 53, 11084–11087. (d) Dohi, T.;
Takenaga, N.; Goto, A.; Maruyama, A.; Kita, Y. Direct Lac-
tone Formation by Using Hypervalent Iodine(III) Reagents
with KBr via Selective C−H Abstraction Protocol. Org. Lett.
2007, 9, 3129-3132. (e) Hayat, S.; Choudhary, M. I.; Khan, K.
M.; Bayer, E. An improved method for the synthesis of g-
ACS Paragon Plus Environment