10.1002/anie.201814242
Angewandte Chemie International Edition
COMMUNICATION
[2] For general reviews on C−S bond formations see: a) T. Kondo, T.-A.
Mitsudo, Chem. Rev. 2000, 100, 3205-3220; b) M. Arisawa, M. Yamaguchi,
Pure Appl. Chem. 2008, 80, 993-1003; c) I. P. Beletskaya, V. P. Ananikov,
Chem. Rev. 2011, 111, 1596-1636; d) P. Chauhan, S. Mahajan, D. Enders,
Chem. Rev. 2014, 114, 8807-8864; e) C. Shen, P. Zhang, Q. Sun, S. Bai,
T. S. A. Hor, X. Liu, Chem. Soc. Rev. 2015, 44, 291-314; f) K. L. Dunbar,
D. H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 2017, 117, 5521-5577.
For reviews on catalytic enantioselective synthesis of sulfur-containing
tetrasubstituted carbon stereocenters, see: g) J. Clayden, P. MacLellan,
Beilstein J. Org. Chem. 2011, 7, 582-595; h) J.-S. Yu, H.-M. Huang, P.-G.
Ding, X.-S. Hu, F. Zhou, J. Zhou, ACS. Catal. 2016, 6, 5319-5344.
[3] a) R. Oballa, C. Bayly, J.-F. Truchon, C. S. Li, S. Leger (Merck), US
20100063013A1, 2010; b) K.-I. Haruna, H. Kanezaki, K. Tanabe, W.-M. Dai,
S.-I. Nishimoto, Bioorg. Med. Chem. 2006, 14, 4427-4432; c) K.-I. Haruna,
K. Tanabe, A. Ishii, W. Min-Dai, H. Hatta, S.-I. Nishimoto, Bioorg. Med.
Chem. 2003, 11, 5311-5316; d) M. M. McPhee, S. M. Kerwin, Bioorg. Med.
Chem. 2001, 9, 2809-2818; e) M. M. McPhee, J. T. Kern, B. C. Hoster, S.
M. Kerwin, Bioorg. Chem. 2000, 28, 98-118; f) M. Muehlebach, W. Lutz, J.
Wenger, J. Finney, C. J. Mathews, D. Fawke (Syngenta), WO
2008110308A2, 2008.
intermediate C which is in resonance with copper-acetylide
intermediate C’. Subsequently, nucleophilic attack of the sulfinate
preferentially occurs at the Re-face of the Cu(allenylidene)
species, in line with the crystallographic analysis of sulfone
product (S)-1 (Scheme 2). Finally, protodemetalation renders the
sulfone target as the free alcohol species in the presence of HFIP
while regenerating the active copper catalyst.
[4] a) A. García-Rubia, J. A. Romero-Revilla, P. Mauleꢀn, R. G. Arrayꢁs, J. C.
Carretero, J. Am. Chem. Soc. 2015, 137, 6857-6865; b) A. L. Moure, P.
Mauleꢀn, R. G. Arrayꢁs, J. C. Carretero, Org. Lett. 2013, 15, 2054-2057; c)
C. Bonini, L. Chiummiento, V. Videtta, Synlett. 2005, 20, 3067-3070.
[5] S. A. Vizer, E. S. Sycheva, A. A. A. Al Quntar, N. B. Kurmankulov, K. B.
Yerzhanov, V. M. Dembitsky, Chem. Rev. 2015, 115, 1475-1502.
[6] a) S. Kitagaki, S. Teramoto, C. Mukai, Org. Lett. 2007, 9, 2549-2552; b) S.
Kitagaki, S. Teramoto, Y. Ohta, H. Kobayashi, M. Takabe, C. Mukai,
Tetrahedron, 2010, 66, 3687-3694; c) T. Martzel, J.-F. Lohier, A.-C.
Gaumont, J.-F. Briꢂre, S. Perrio, Adv. Synth. Catal. 2017, 359, 96-106.
[7] Y. Liu, P. Xie, Z. Sun, X. Wo, C. Gao, W. Fu, T.-P. Loh, Org. Lett. 2018, 20,
5353-5356.
Scheme 4. Plausible mechanism towards the formation of sulfone (S)-1.
In summary, we have developed a general copper-catalyzed
asymmetric propargylic sulfonylation reaction enabling the
preparation of elusive scaffolds featuring quaternary
stereocenters. This protocol is characterized by good to high
yields, high enantiomeric ratios of up to 98:2 and appreciable
scope in reaction partners. It thus provides a new synthetic
approach targeting the construction of sulfur-containing
tetrasubstituted carbon stereocenters that could further enlarge
the potential of sulfone-based drug ingredients. The newly
prepared, formal propargylic -hydroxy sulfones serve as
versatile synthetic precursors to a variety of other enantioenriched
building blocks.
[8] For reviews refer to: a) Sulfones in Organic Synthesis, ed. N. S. Simpkins,
Pergamon Press, New York 1993; b) N.-W. Liu, S. Liang, G. Manolikakes,
Synthesis 2016, 13, 1939-1973; For a recent original example: c) Z. T. Ariki,
Y. Maekawa, M. Nambo, C. Crudden, J. Am. Chem. Soc. 2018, 140, 78-81.
[9] For reviews see: a) R. J. Detz, H. Hiemstra, J. H. van Maarseveen, Eur. J.
Org. Chem. 2009, 6263-6276; b) Y. Nishibayashi, Synthesis 2012, 44, 489-
503; c) D.-Y. Zhang, X.-P. Hu, Tetrahedron Lett. 2015, 56, 283-295; d) C.-
H. Ding, X.-L. Hou, Chem. Rev. 2011, 111, 1914-1937; e) N. Ljungdahl, N.
Kann, Angew. Chem. Int. Ed. 2009, 48, 642-644; f) R. Roya, S. Saha, RSC
Adv. 2018, 8, 31129-31193. For a selection of original research articles
see: g) R. J. Detz, M. M. E. Delville, H. Hiemstra, J. van Maarseveen,
Angew. Chem. Int. Ed. 2008, 47, 3777-3780; h) G. Hattori, H. Matsuzawa,
Y. Miyake, Y. Nishibayashi, Angew. Chem. Int. Ed. 2008, 47, 3781-3783; i)
C. Zhang, X.-H. Hu, Y.-H. Wang, Z. Zheng, J. Xu, X.-P. Hu, J. Am. Chem.
Soc. 2012, 134, 9585-9588. j) F.-L. Zhu, Y. Zou, D.-Y. Zhang, Y.-H. Wang,
X.-H. Hu, S. Chen, J. Xu, X.-P. Hu, Angew. Chem. Int. Ed. 2014, 53, 1410-
1414; k) K. Nakajima, M. Shibata, Y. Nishibayashi, J. Am. Chem. Soc. 2015,
137, 2472-2475; l) W. Shao, H. Li, C. Liu, C.-J. Liu, S.-L. You, Angew.
Chem. Int. Ed. 2015, 54, 7684-7687; m) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M.
Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360-8363; n) J.
Song, Z.-J. Zhang, L.-Z. Gong, Angew. Chem. Int. Ed. 2017, 56, 5212-
5216; o) R.-Z. Li, H. Tang, K. R. Yang, L.-Q. Wan, X. Zhang, J. Liu, Z. Fu,
D. Niu, Angew. Chem. Int. Ed. 2017, 56, 7213-7217; p) H. Xu, L. Laraia, L.
Schneider, K. Louven, C. Strohmann, A. P. Antonchick, H. Waldmann,
Angew. Chem. Int. Ed. 2017, 56, 11232-11236; q) K. Zhang, L.-Q. Lu, S.
Yao, J.-R. Chen, D.-Q. Shi, W.-J. Xiao, J. Am. Chem. Soc. 2017, 139,
12847-12854. For selected examples of Cu-APS reactions leading to
quaternary centers see: r) K. Tsuchida, Y. Senda, K. Nakajima, Y.
Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 9728-9732; s) A. Shemet,
E. M. Carreira, Org. Lett. 2017, 19, 5529-5532; t) Z. Fu, N. Deng, S.-N. Su,
H. Li, R.-Z. Li, X. Zhang, J. Liu, D. Niu, Angew. Chem. Int. Ed. 2018, 57,
15217-15221; u) R.-Z. Li, H. Tang, L. Wan, X. Zhang, Z. Fu, J. Liu, S. Yang,
D. Jia, D. Niu, Chem 2017, 3, 834-845.
Acknowledgements
We thank the CERCA Program/Generalitat de Catalunya, ICREA,
the Spanish MINECO (CTQ2017-88920-P), and AGAUR (2017-
SGR-232) for financial support. JEG thanks the MINECO for a
Severo Ochoa/FPI predoctoral fellowship. M. Serrano, M. Díaz
and S. Curreli are acknowledged for the UPC2 analyses.
Keywords: asymmetric synthesis • copper • homogeneous
catalysis • propargylic substitution • tertiary sulfones
[1] For the importance of optically active sulfur-containing compounds see: a)
Sulphur-Containing Drugs and Related Organic Compounds, ed. L. A.
Damani, Wiley, New York 1989; b) Organosulfur Chemistry in Asymmetric
Synthesis, eds. T. Toru, C. Bolm, Wiley-VCH, Weinheim 2008; c) H. Liu, X,.
Jiang, Chem. Asian J. 2013, 8, 2546-2563; d) M. Feng, B. Tang, S. H. Liang,
X. Jiang, Curr. Top. Med. Chem. 2016, 16, 1200-1216; e) K. A. Scott, J. T.
Njardarson, Top. Curr. Chem. 2018, 376, 5.
This article is protected by copyright. All rights reserved.