10.1002/anie.201905250
Angewandte Chemie International Edition
COMMUNICATION
2018, 20, 1046–1049. g) Q. Shiab, C.-F. Chen, Chem. Sci. 2019, 10,
2529–2533. For closely related but light-powered transient co-
conformational switching in interlocked molecules, see: h) A. M.
Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier, F. Paolucci, S.
Roffia, G. W. H. Wurpel, Science 2001, 291, 2124–2128. i) G. W. H.
Wurpel, A. M. Brouwer, I. H. M. van Stokkum, A. Farran, D. A Leigh, J.
Am. Chem. Soc. 2001, 123, 11327–11328. j) V. Balzani, M. Clemente-
León, A. Credi, B. Ferrer, M. Venturi, A. H. Flood, J. F. Stoddart. Proc.
Natl. Acad. Sci. USA 2006, 103, 1178–1183. k) E. R. Kay, D. A. Leigh,
Nature 2006, 440, 286–287.
Acknowledgements
We thank the Engineering and Physical Sciences Research
Council (EPSRC; EP/P027067/1), the EU (European Research
Council (ERC) Advanced Grant no. 786630; Marie Skłodowska-
Curie Individual Postdoctoral Fellowship to F.S., EC 746993),
the CESaRe project from La Sapienza for funding to C.B., and
the University of Manchester Mass Spectrometry Service Centre
for high-resolution mass spectrometry. We are grateful to Dr.
Daniel Tetlow for useful discussions. D.A.L. is a Royal Society
Research Professor.
[7]
a) C. Pezzato, L. J. Prins, Nat. Commun. 2015, 6, 7790. b) F. Della
Sala, S. Maiti, A. Bonanni, P. Scrimin, L. J. Prins, Angew. Chem. Int. Ed.
2018, 57, 1611–1615. Angew. Chem. 2018, 130, 1627–1631.
S. M. Morrow, I. Colomer, S. P. Fletcher, Nat. Commun. 2019, 10, 1011.
S. Maiti, I. Fortunati, C. Ferrante, P. Scrimin, L. J. Prins, Nat. Chem.
2016, 8, 725–731.
[8]
[9]
Keywords: Molecular machines • Rotaxanes • Hydrogen
bonding catalysis • Out-of-equilibrium systems • Chemical fuels
[10] B. A. Grzybowski, K. Fitzner, J. Paczesny, S. Granick, Chem. Soc. Rev.
2017, 46, 5647–5678.
[1]
[2]
S. Mann, Angew. Chem. Int. Ed. 2008, 47, 5306–5320. Angew. Chem.
2008,120, 5386–5401.
[11] L. Zhang, V. Marcos, D. A. Leigh, Proc. Natl. Acad. Sci. USA 2018, 115,
9397–9404.
a) B. A. Grzybowski, W. T. S. Huck, Nat. Nanotechnol. 2016, 11, 585–
592. b) S. A. P. van Rossum, M. Tena-Solsona, J. H. van Esch, R.
Eelkema, J. Boekhoven, Chem. Soc. Rev. 2017, 46, 5519–5535. c) R.
Merindol, A. Walther Chem. Soc. Rev. 2017, 46, 5588–5619. d) G.
Ragazzon, L. J. Prins, Nat. Nanotechnol. 2018, 13, 882–889.
[12] a) V. Blanco, D. A. Leigh, V. Marcos, Chem. Soc. Rev. 2015, 44, 5341–
5370. b) S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L.
Nussbaumer, Chem. Rev. 2015, 115, 10081–10206. c) M. Vlatkovic, B.
S. L. Collins, B. L. Feringa, Chem.—Eur. J. 2016, 22, 17080–17111. d)
L. van Dijk, M. J. Tilby, R. Szpera, O. A. Smith, H. A. P. Bunce, S. P.
Fletcher, Nat. Chem. Rev. 2018, 2, 0117.
[3]
a) J. Boekhoven, A. M. Brizard, K. N. K. Kowlgi, G. K. M. Koper, R.
Eelkema, J. H. van Esch, Angew. Chem. Int. Ed. 2010, 49, 4825–4828.
Angew. Chem. 2010, 122, 4935–4938. b) Q. Li, G. Fuks, E. Moulin, M.
Maaloum, M. Rawiso, I. Kulic, J. T. Foy, N. Giuseppone, Nat.
Nanotechnol. 2015, 10, 161–165. c) J. Boekhoven, W. E. Hendriksen,
G. J. M. Koper, R. Eelkema, J. H. van Esch, Science 2015, 349, 1075–
1079. d) S. Dhiman, A. Jain, S. J. George, Angew. Chem. Int. Ed. 2017,
56, 1329–1333. Angew. Chem. 2017, 129, 1349–1353. e) M. Tena-
Solsona, B. Rieß, R. Grötsch, F. Löhrer, C. Wanzke, B. Käsdorf, A.
Bausch, P. Müller-Buschbaum, O. Lieleg, J. Boekhoven, Nat. Commun.
2017, 8, 15895. f) J. P. Wojciechowski, A. D. Martin, P. Thordarson, J.
Am. Chem. Soc. 2018, 140, 2869–2874.
[13] For examples of switchable catalysis with synthetic molecular machines,
see: a) J. Wang, B. L. Feringa, Science 2011, 331, 1429–1432. b) V.
Blanco, A. Carlone, K. D. Hänni, D. A. Leigh, B. A. Lewandowski,
Angew. Chem. Int. Ed. 2012, 51, 5166–5169. Angew. Chem. 2012, 124,
5256–5259. c) J. Beswick, V. Blanco, G. De Bo, D. A. Leigh, U.
Lewandowska, B. A. Lewandowski, K. Mishiro, Chem. Sci. 2015, 6,
140–143. d) M. Galli, J. E. M. Lewis, S. M. Goldup, Angew. Chem. Int.
Ed. 2015, 54, 13545–13549. Angew. Chem. 2015, 127, 13749–13753.
e) C.-S. Kwan, A. S. C. Chan, K. C.-F. Leung, Org. Lett. 2016, 18, 976–
979. f) N. Mittal, S. Pramanik, I. Paul, S. De, M. Schmittel, J. Am. Chem.
Soc. 2017, 139, 4270–4273. g) S. Semwal, J. Choudhury, Angew.
Chem. Int. Ed. 2017, 56, 5556–5560. Angew. Chem. 2017, 129, 5648–
5652. h) K. Eichstaedt, J. Jaramillo-Garcia, D. A. Leigh, V. Marcos, S.
Pisano, T. A. Singleton, J. Am. Chem. Soc. 2017, 139, 9376–9381. i) G.
De Bo, D. A. Leigh, C. T. McTernan, S. Wang, Chem. Sci. 2017, 8,
7077–7081. j) J. Y. C. Lim, N. Yuntawattana, P. D. Beer, C. K. Williams,
Angew. Chem. Int. Ed. 2019, 58, 6007–6011. Angew. Chem. 2019, 131,
6068–6072.
[4]
a) H. Fanlo-Virgós, A.-N. R. Alba, S. Hamieh, M. Colomb-Delsuc, S.
Otto, Angew. Chem. Int. Ed. 2014, 53, 11346–11350. Angew. Chem.
2014, 126, 11528–11532. b) C. S. Wood, C. Browne, D. M. Wood, J. R.
Nitschke, ACS Cent. Sci. 2015, 1, 504–509. c) L. S. Kariyawasam, C. S.
Hartley, J. Am. Chem. Soc. 2017, 139, 11949–11955. d) E. Del Grosso,
G. Ragazzon, L. J. Prins, F. Ricci, Angew. Chem. Int. Ed. 2019, 58,
5582–5586. Angew. Chem. 2019, 131, 5638–5642.
[5]
a) M. R. Wilson, J. Solà, A. Carlone, S. M. Goldup, N. Lebrasseur, D. A.
Leigh, Nature 2016, 534, 235–240. b) S. Erbas-Cakmak, S. D. P.
Fielden, U. Karaca, D. A. Leigh, C. T. McTernan, D. J. Tetlow, M. R.
Wilson, Science 2017, 358, 340–343. For ratcheted rotaxanes and
catenanes powered by light or electrochemistry, see: c) D. A. Leigh, J.
K. Y. Wong, F. Dehez, F. Zerbetto, Nature 2003, 424, 174–179. d) J. V.
Hernández, E. R. Kay, D. A. Leigh, Science 2004, 306, 1532–1537. e)
M. N. Chatterjee, E. R. Kay, D. A. Leigh, J. Am. Chem. Soc. 2006, 128,
4058–4073. f) V. Serreli, C.-F. Lee, E. R. Kay, D. A. Leigh, Nature 2007,
445, 523–527. g) G. Ragazzon, M. Baroncini, S. Silvi, M. Venturi, A.
Credi, Nat. Nanotechnol. 2015, 10, 70–75. h) C. Cheng, P. R.
McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke, J. F.
Stoddart, Nat. Nanotechnol. 2015, 10, 547–553.
[14] Z. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187–1198.
[15] Under strictly anhydrous conditions 1H+ can be quantitatively
deprotonated to 1. However, it was generally not convenient to
rigorously exclude water from the chemical fuel experiments and the
high crown-ether-induced basicity of the rotaxane [N. Kihara, Y.
Tachibana, H. Kawasaki, T. Takata, Chem. Lett. 2000, 29, 506–507]
meant that in those experiments pre-catalyst 1 generally contained a
small amount (<5%) of 1H+ -OH (e.g. Figure 2).
[16] Excess Cl3CCO2H inhibits the fuel decomposition.
[17] Due to the sigmoidal reaction kinetics, small differences in the amount
of fuel added causes significantly different lifetimes of the transient
state of the rotaxane.
[18] C. Zheng, S.-L. You, Chem. Soc. Rev. 2012, 41, 2498–2518.
[19] a) Y. Inoue, S. Imaizumi, H. Itoh, T. Shinya, H. Hashimoto, S. Miyano,
Bull. Chem. Soc. Jpn. 1988, 61, 3020–3022. b) Z. Zhang, P. R.
Schreiner, Synthesis 2007, 16, 2559–2564.
[6]
a) J. Berna, M. Alajarin, R.-A. Orenes, J. Am. Chem. Soc. 2010, 132,
10741–10747. b) Y. Abe, H. Okamura, K. Nakazono, Y. Koyama, S.
Uchida, T. Takata, Org. Lett. 2012, 14, 4122–4125. c) J. A. Berrocal, C.
Biagini, L. Mandolini, S. Di Stefano, Angew. Chem. Int. Ed. 2016, 55,
6997–7001. Angew. Chem. 2016, 128, 7111–7115. d) C. Biagini, S.
Albano, R. Caruso, L. Mandolini, J. A. Berrocal, S. Di Stefano, Chem.
Sci. 2018, 9, 181–188. e) C. Biagini, F. Di Pietri, L. Mandolini, O.
Lanzalunga, S. Di Stefano, Chem.—Eur. J. 2018, 24, 10122–10127. f)
A. Ghosh, I. Paul, M. Adlung, C. Wickleder, M. Schmittel, Org. Lett.
[20] Simultaneous addition of CCl3COOH and Et3N led to slightly faster
reaction rates, indicating a small co-catalyst effect. We also tested
several 2-cyano-2-arylpropanoic acids in the catalysis experiments, see
refs [6c-f]. However, these acids catalyzed the transfer hydrogenation
reaction on its own, probably due to its lower acidity changing the
mechanism from specific to general acid catalysis, see reference [19a].
This article is protected by copyright. All rights reserved.