3
Y.; Decurtins, S.; Meyer, G.; Gross, L. Nano Lett. 2014, 14,
3342-3346.
to the epoxy group were as reactive as 2b, and the corresponding
cyclic trithiocarbonates (3c, 3d and 3e) were isolated in high
yields (Entries 3-6). The episulfide containing a long-chain alkyl
group, 2-decylthiirane (2f), had a lower reactivity than the other
episulfides (Entry 7). When the reaction time was extended from
24 to 48 h, the conversion of 2f increased and the cyclic
trithiocarbonate (3f) was isolated in high yield (Entry 8).
2. (a) Adams, H.; Allott, C.; Bancroft, M. N.; Morris, M. J. J. Chem.
Soc., Dalton Trans. 2000, 4145-4153; (b) Nihei, M.; Kurihara, M.;
Mizutani, J.; Nishihara, H. J. Am. Chem. Soc. 2003, 125, 2964-
2973; (c) Brombacher, H.; Vahrenkamp, H. Inorg. Chem. 2004,
43, 6050-6053; (d) Lu, X. L.; Vittal, J. J.; Tiekink, E. R. T.; Goh,
L. Y.; Hor, T.S. A. J. Organomet. Chem. 2004, 689, 1444-1451;
(e) Alphonse, F.-A.; Karim, R.; C.-Soumillac, C.; Hebray, M.;
Collison, D.; Garner, C. D.; Joule, J. A. Tetrahedron 2005, 61,
11010-11019; (f) Okubo, T.; Maeda, R.; Kondo, M.; Mitani, T.;
Kitagawa, S. Chem. Lett. 2006, 35, 34-35; (g) Bertz, S. H.;
Moazami, Y.; Murphy, M. D.; Ogle, C. A.; Richter, J. D.;
Thomas, A. A. J. Am. Chem. Soc. 2010, 132, 9549-9551.
3. Ishii, A.; Asami, S.; Fujiwara, Y.; Ono, A.; Nakata, N.
Heteroatom Chem. 2011, 22, 388-396.
Table 3. Synthesis of various cyclic trithiocarbonates using 1a
under ambient conditions.a
4. Wang, B.; Yang, S.; Min, L.; Gu, Y.; Zhang, Y.; Wu, X.; Zhang,
L.; Elageed, E. H. M.; Wu, S.; Gao, G. Adv. Synth. Catal. 2014,
356, 3125-3134.
5. Lal, N.; Sarswat, A.; Kumar, L.; Nandikonda, K.; Jangir, S.; Bala,
V.; Sharma, V. L. J. Heterocyclic Chem. 2015, 52, 156-162.
6. Du, B.; Mei, A.; Yang, Y.; Zhang, Q.; Wang, Q.; Xu, J.; Fan, Z.
Polymer 2010, 51, 3493-3502.
7. Li, W.; Zhao, X.; Liu, H. Polym. Chem. 2014, 5, 1905-1911.
8. (a) Sugawara, A.; Sato, T.; Sato, R. Bull. Chem. Soc. Jpn. 1989,
62, 339-341; (b) Lee, A. M. W.; Chan, W. H.; Wong, H. C. Synth.
Commun. 1988, 18, 1531-1536.
9. Taguchi, Y.; Yanagiya, K.; Shibuya, I.; Suhara, Y. Bull. Chem.
Soc. Jpn. 1987, 60, 727-730.
10. Diebler, J.; Spannenberg, A.; Werner, T. Org. Biomol. Chem.
2016, 14, 7480-7489.
11. Clegg, W.; Harrington, R. W.; North, M.; Villuendas, P. J. Org.
Chem. 2010, 75, 6201-6207.
Entry
Episulfide
Solvent
Bulk
Time (h)
24
Yieldb (%)
99 (97)c
>99 (98)c
99 (92)c
>99 (99)c
89
1
2
3
4
5
6
7
2a
2b
2c
2d
2e
2e
2f
Toluene
Bulk
24
24
Bulk
24
Bulk
24
Bulk
36
>99 (97)c
12. Motokucho, S.; Takeuchi, D.; Sanda, F.; Endo, T. Tetrahedron
2001, 57, 7149-7152.
Bulk
24
69
13. Synthesis of 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine (1a): The
mixture of N-methyl-1,3-diaminopropane (4.41 g, 50 mmol) and
N,N-dimethylacetamide dimethyl acetal (90% purity, 7.77 g, 52.5
mmol) was stirred at 80 °C without solvent. After 1 h, the mixture
was evaporated in vacuo, and the residue was distilled under
reduced pressure to give 1a (5.33 g, 95%) as a colorless liquid;
B.p. 62-64 °C/1.0 kPa. 1H NMR (400 MHz, CDCl3, 25 ˚C) δ
(ppm): 1.83 (quin, J = 6.0 Hz, 2H, NCH2CH2CH2N), 1.96 (s, 3H,
CCH3), 2.88 (s, 3H, NCH3), 3.13 (t, J = 6.0 Hz, 2H,
8
2f
Bulk
48
>99 (98)c
a
Reagents and conditions: 2a-f (5 mmol), CS2 (10 mmol), 1a (0.05 mmol),
bulk or in toluene (1 mL), 25 °C, 24-48 h.
bDetermined by 1H NMR spectroscopy.
cIsolated yields are in parentheses.
Conclusion
NCH2CH2CH2NCH3), 3.29 (t, J = 6.0 Hz, 2H,
NCH2CH2CH2NCH3). 13C NMR (100 MHz, CDCl3, 25 ˚C) δ
(ppm): 22.0 (NCH2CH2CH2N), 22.7 (CCH3), 38.7 (NCH3), 44.2
(NCH2CH2CH2NCH3), 48.3 (NCH2CH2CH2NCH3), 155.8 (NCN).
14. The pKa values were calculated using Advanced Chemistry
Development (ACD/Labs) software V11.02 ((c)1994-2016
ACD/Labs).
We have demonstrated that cyclic and linear amidines
effectively catalyzed the reactions of CS2 and episulfides to
afford the corresponding cyclic trithiocarbonates in high yields
under mild conditions such as ordinary pressure and ambient
temperature. The catalytic activity is highly affected by the
strongly basic amino group on the catalysts; amidines efficiently
catalyze the trithiocarbonate-forming reaction, in contrast
triethylamine and heterocyclic aromatic compound such as 1-
methylimidazole and pyridine show low reactivity. We believe
that the results obtained in this study will serve as a basis for
creating a mild and simple method for the synthesis of cyclic
trithocarbonate-containing organic compounds.
15. Aoyagi, N.; Endo, T. ChemistrySelect 2017, 2, 4465-4467.
16. Typical procedure of cyclic trithiocarbonates (3a-f): A mixture of
CS2 (10 mmol) and 1a (0.05 mmol) was stirred at 25 °C for 10
min, and then episulfide (5 mmol) or a dilute solution of episulfide
in toluene (1 mL) was added dropwise to the mixture. After the
mixture was stirred at 25 °C for 24-48 h, the reaction mixture was
diluted with ethyl acetate (10 mL), and washed with water (10
mL). The aqueous phase was extracted with ethyl acetate (10 mL),
and the combined organic layers were dried over Na2SO4 and
evaporated in vacuo. The residue was purified by silica gel
column chromatography (hexane/acetone = 3:1) to give cyclic
trithiocarbonate as a yellow oil (3a, 3c-f) or solid (3b).
References and notes
1. (a) Gautier, N.; Dumur, F.; Lloveras, V.; V.-Gancedo, J.; Veciana,
J.; Rovira, C.; Hudhomme, P. Angew. Chem. Int. Ed. 2003, 42,
2765-2768; (b) Otón, F.; Pfattner, R.; Oxtoby, N. S.; M.-Torrent,
M.; Wurst, K.; Fontrodona, X.; Olivier, Y.; Cornil, J.; Veciana, J.;
Rovira, C. J. Org. Chem. 2011, 76, 154-163; (c) C.-Lacalle, D.;
Arumugam, S.; Elmasly, S. E. T.; Kanibolotsky, A. L.; Findlay, N.
J.; Inigo, A. R.; Skabara, P. J. J. Mater. Chem. 2012, 22, 11310-
11315; (d) Tucker, N. M.; Briseno, A. L.; Acton, O.; Yip, H.-L.;
Ma, H.; Jenekhe, S. A.; Xia, Y.; Jen, A. K.-Y. ACS Appl. Mater.
Interfaces 2013, 5, 2320-2324; (e) Schuler, B.; Liu, S.-X.; Geng,
Supplementary Material
Supplementary data (experimental data and NMR spectra of
isolated compounds) associated with this article can be found, in